Spurious regression due to neglected of non-stationary volatility

This paper examines the effects of permanent changes in the variance of the errors on routine applications of standard t-ratio test in regression models. It is shown the asymptotic distribution of t-ratio test is not invariant to non-stationary in variance, and the phenomenon of spurious regression will occur independently of the structure assumed for these time series. The intuition behind this is that the non-stationary volatility can increase persistency in the level of regression errors, which then leads to spurious correlation. Monte Carlo experiment evidence indicates that, in contrast to the broken level/trend case, the presence of spurious relationship critically depends on the location and magnitude of changes, regardless of the sample size. Finally, some real data sets from the Shanghai stock database are reported for illustration.

[1]  Peter Schmidt,et al.  Unit root tests with conditional heteroskedasticity , 1993 .

[2]  F. Mármol Spurious regression theory with nonstationary fractionally integrated processes , 1998 .

[3]  Christopher G. Lamoureux,et al.  Persistence in Variance, Structural Change, and the GARCH Model , 1990 .

[4]  Paul Newbold,et al.  Unit root tests with a break in innovation variance , 2002 .

[5]  Jean-Bernard Chatelain,et al.  Spurious Regressions and Near-Multicollinearity, with an Application to Aid, Policies and Growth , 2012 .

[6]  Hao Jin,et al.  Modified tests for variance changes in autoregressive regression , 2011, Math. Comput. Simul..

[7]  A note on spurious significance in regressions involving I(0) and I(1) variables , 2011 .

[8]  J. Stock,et al.  Efficient Tests for an Autoregressive Unit Root , 1992 .

[9]  Martin Schneider,et al.  Coordination and correlation in Markov rational belief equilibria , 1996 .

[10]  Dick van Dijk,et al.  Changes in variability of the business cycle in the G7 countries , 2002 .

[11]  Spurious Regression and Trending Variables , 2007 .

[12]  Shigeyuki Hamori,et al.  Testing for a unit root in the presence of a variance shift1 , 1997 .

[13]  Spurious regressions between stationary generalized long memory processes , 2006 .

[14]  Sangyeol Lee,et al.  On the Cusum test for parameter changes in garch(1,1) Models , 2000 .

[15]  G. C. Tiao,et al.  Use of Cumulative Sums of Squares for Retrospective Detection of Changes of Variance , 1994 .

[16]  Piotr Kokoszka,et al.  Almost sure convergence of the Bartlett estimator , 2005, Period. Math. Hung..

[17]  Bruce E. Hansen,et al.  Consistent Covariance Matrix Estimation for Dependent Heterogeneous Processes , 1992 .

[18]  Bruce E. Hansen,et al.  Convergence to Stochastic Integrals for Dependent Heterogeneous Processes , 1992, Econometric Theory.

[19]  Wen-Jen Tsay,et al.  The spurious regression of fractionally integrated processes , 2000 .

[20]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[21]  Sangyeol Lee,et al.  The Cusum of Squares Test for Scale Changes in Infinite Order Moving Average Processes , 2001 .

[22]  P. Newbold,et al.  Spurious regressions with stationary processes around linear trends , 2004 .

[23]  Timo Teräsvirta,et al.  Modelling changes in the unconditional variance of long stock return series , 2012 .

[24]  Piotr Kokoszka,et al.  A bootstrap approximation to a unit root test statistic for heavy-tailed observations , 2003 .

[25]  J. Davidson Stochastic Limit Theory , 1994 .

[26]  M. Canoy Natural monopoly and differential pricing , 1994 .

[27]  Ling Hu,et al.  Robust estimation for structural spurious regressions and a Hausman-type cointegration test , 2005 .

[28]  Edit Gombay,et al.  Testing for changes in the covariance structure of linear processes , 2009 .

[29]  W. Stout Almost sure convergence , 1974 .

[30]  Efstathios Paparoditis,et al.  On bootstrapping L2-type statistics in density testing , 2000 .

[31]  D. Andrews Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation , 1991 .

[32]  A STRONG CONSISTENCY PROOF FOR HETEROSKEDASTICITY AND AUTOCORRELATION CONSISTENT COVARIANCE MATRIX ESTIMATORS , 2000, Econometric Theory.

[33]  N. Haldrup The asymptotics of single-equation cointegration regressions with I(1) and I(2) variables , 1994 .

[34]  Jae-Young Kim Detection of change in persistence of a linear time series , 2000 .

[35]  Yong Zhou,et al.  Nonparametric estimation of structural change points in volatility models for time series , 2005 .

[36]  C. Granger,et al.  Spurious regressions in econometrics , 1974 .

[37]  Victor Solo,et al.  Asymptotics for Linear Processes , 1992 .

[38]  P. Phillips Understanding spurious regressions in econometrics , 1986 .

[39]  Hao Jin,et al.  Computational Statistics and Data Analysis the Spurious Regression of Ar(p) Infinite-variance Sequence in the Presence of Structural Breaks , 2022 .

[40]  P. Phillips Testing for a Unit Root in Time Series Regression , 1988 .

[41]  Horst Entorf,et al.  Random walks with drifts: Nonsense regression and spurious fixed-effect estimation , 1997 .