Parallel Domain Decomposition Methods for Stochastic Elliptic Equations

We present parallel Schwarz-type domain decomposition preconditioned recycling Krylov subspace methods for the numerical solution of stochastic elliptic problems, whose coefficients are assumed to be a random field with finite variance. Karhunen-Loeve (KL) expansion and double orthogonal polynomials are used to reformulate the stochastic elliptic problem into a large number of related but uncoupled deterministic equations. The key to an efficient algorithm lies in “recycling computed subspaces.” Based on a careful analysis of the KL expansion, we propose and test a grouping algorithm that tells us when to recycle and when to recompute some components of the expensive computation. We show theoretically and experimentally that the Schwarz preconditioned recycling GMRES method is optimal for the entire family of linear systems. A fully parallel implementation is provided, and scalability results are reported in the paper.

[1]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[2]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[3]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[4]  I. Babuska,et al.  Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation , 2005 .

[5]  Gene H. Golub,et al.  Matrix computations , 1983 .

[6]  Yousef Saad,et al.  Deflated and Augmented Krylov Subspace Techniques , 1997, Numer. Linear Algebra Appl..

[7]  Ronald B. Morgan,et al.  A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..

[8]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[9]  Olof B. Widlund,et al.  Domain Decomposition Algorithms for Indefinite Elliptic Problems , 2017, SIAM J. Sci. Comput..

[10]  Ivo Babuška,et al.  On solving elliptic stochastic partial differential equations , 2002 .

[11]  Xiao-Chuan Cai,et al.  An Optimal Two-Level Overlapping Domain Decomposition Method for Elliptic Problems in Two and Three Dimensions , 1993, SIAM J. Sci. Comput..

[12]  N. Wiener The Homogeneous Chaos , 1938 .

[13]  D. Xiu,et al.  Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .

[14]  C. Farhat,et al.  Extending substructure based iterative solvers to multiple load and repeated analyses , 1994 .

[15]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[16]  D. O’Leary,et al.  Efficient iterative algorithms for the stochastic finite element method with application to acoustic scattering , 2005 .

[17]  Y. Saad,et al.  Deflated and Augmented Krylov Subspace Techniques , 1997 .

[18]  Michel Loève,et al.  Probability Theory I , 1977 .

[19]  Howard C. Elman,et al.  Solving the Stochastic Steady-State Diffusion Problem using , 2006 .

[20]  Eric de Sturler,et al.  Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..

[21]  Yalchin Efendiev,et al.  Coarse-gradient Langevin algorithms for dynamic data integration and uncertainty quantification , 2006, J. Comput. Phys..

[22]  Marcus Sarkis,et al.  Stochastic Galerkin Method for Elliptic Spdes: A White Noise Approach , 2006 .

[23]  Efstratios Gallopoulos,et al.  An Iterative Method for Nonsymmetric Systems with Multiple Right-Hand Sides , 1995, SIAM J. Sci. Comput..

[24]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[25]  P. Frauenfelder,et al.  Finite elements for elliptic problems with stochastic coefficients , 2005 .

[26]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[27]  K. Prasad,et al.  GMRES FOR SEQUENTIALLY MULTIPLE NEARBY SYSTEMS , 1995 .

[28]  Paul Fischer,et al.  PROJECTION TECHNIQUES FOR ITERATIVE SOLUTION OF Ax = b WITH SUCCESSIVE RIGHT-HAND SIDES , 1993 .

[29]  Elisabeth Ullmann,et al.  Computational aspects of the stochastic finite element method , 2007 .

[30]  Mary F. Wheeler,et al.  Stochastic Subspace Projection Methods for Efficient Multiphase Flow Uncertainty Assessment , 2006 .