Central-type benzodiazepines modulate GABAA receptor chloride channels in cultured pituitary melanotrophs.

[1]  L. Cazin,et al.  Electrophysiological evidence for the existence of GABAA receptors in cultured frog melanotrophs , 1990, Brain Research.

[2]  L. Cazin,et al.  Central-type benzodiazepines and the octadecaneuropeptide modulate the effects of GABA on the release of α-melanocyte-stimulating hormone from frog neurointermediate lobe in vitro , 1989, Neuroscience.

[3]  H. Kettenmann,et al.  GABA-activated Cl- channels in astrocytes of hippocampal slices , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  P. Seeburg,et al.  Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology , 1989, Nature.

[5]  C. Czajkowski,et al.  Transmembrane topology of the gamma-aminobutyric acidA/benzodiazepine receptor: subcellular distribution and allosteric coupling determined in situ. , 1989, Molecular pharmacology.

[6]  L. Cazin,et al.  Patch-clamp study of the ionic currents underlying action potentials in cultured frog pituitary melanotrophs. , 1988, Neuroendocrinology.

[7]  R. Wong,et al.  GABAA-receptor function in hippocampal cells is maintained by phosphorylation factors. , 1988, Science.

[8]  E. Costa,et al.  Actions of benzodiazepine and beta-carboline derivatives on gamma-aminobutyric acid-activated Cl- channels recorded from membrane patches of neonatal rat cortical neurons in culture. , 1987, The Journal of pharmacology and experimental therapeutics.

[9]  W. Mason,et al.  γ-Aminobutyric acid modulates chloride channel activity in cultured primary bovine lactotrophs , 1987, Neuroscience.

[10]  H. Lux,et al.  Patch-clamp study of ion channels activated by GABA and glycine in cultured cerebellar neurons of the mouse , 1987, Neuroscience Letters.

[11]  J. Barker,et al.  Intracellular Ca2+-dependent protein kinase C activation mimics delayed effects of thyrotropin-releasing hormone on clonal pituitary cell excitability. , 1987, Endocrinology.

[12]  L. Cazin,et al.  VI. The benzodiazepine agonist clonazepam potentiates the effects of γ-aminobutyric acid on α-MSH release from neurointermediate lobes in vitro. , 1987 .

[13]  B. Sakmann,et al.  Mechanism of anion permeation through channels gated by glycine and gamma‐aminobutyric acid in mouse cultured spinal neurones. , 1987, The Journal of physiology.

[14]  L. Tapia-Arancibia,et al.  Benzodiazepines inhibit thyrotropin (TSH)-releasing hormone-induced TSH and growth hormone release from perifused rat pituitaries. , 1986, Endocrinology.

[15]  L. Cazin,et al.  GABA-ergic control of α-Melanocyte-Stimulating Hormone (α-MSH) release by frog neurointermediate lobe in vitro , 1986, Brain Research Bulletin.

[16]  C. Czajkowski,et al.  Transmembrane topology and subcellular distribution of the benzodiazepine receptor , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  S. Paul,et al.  Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. , 1986, Science.

[18]  J. Loeffler,et al.  GABAA and GABAB receptors on porcine pars intermedia cells in primary culture: Functional role in modulating peptide release , 1986, Neuroscience.

[19]  P. Leroux,et al.  Localization and identification of α-melanocyte-stimulating hormone (α-MSH) in the frog brain , 1986, Brain Research.

[20]  B. MacVicar,et al.  Novel synaptic responses mediated by dopamine and γ-aminobutyric acid in neuroendocrine cells of the intermediate pituitary , 1986, Neuroscience Letters.

[21]  J. Venter,et al.  Benzodiazepine/GABA receptors and chloride channels : structural and functional properties , 1986 .

[22]  D. Clapham,et al.  gamma-Aminobutyric acid receptor channels in adrenal chromaffin cells: a patch-clamp study. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[23]  R. Mitchell,et al.  Analysis of benzodiazepine binding sites in rat pituitary gland , 1984, Brain Research.

[24]  I. Martin,et al.  Autoradiographic localisation of benzodiazepine receptors in the rat pituitary gland. , 1984, European journal of pharmacology.

[25]  E. Wong,et al.  γ-Aminobutyric acid activation of36Cl-flux in rat hippocampal slices and its potentiation by barbiturates , 1984, Brain Research.

[26]  M. Cronin,et al.  The benzodiazepine agonist diazepam inhibits basal and secretagogue-stimulated prolactin release in vitro , 1984, Brain Research.

[27]  W. Douglas,et al.  GABA acts directly on cells of pituitary pars intermedia to alter hormone output , 1983, Nature.

[28]  W. Douglas,et al.  GABA directly affects electrophysiological properties of pituitary pars intermedia cells , 1982, Nature.

[29]  A. Porte,et al.  Fine structure and cytochemistry of the mammalian pars intermedia. , 1981, Ciba Foundation symposium.

[30]  P. Andersen,et al.  Two different responses of hippocampal pyramidal cells to application of gamma‐amino butyric acid. , 1980, The Journal of physiology.

[31]  G. Fischbach,et al.  Chlordiazepoxide selectively augments GABA action in spinal cord cell cultures , 1977, Nature.

[32]  L. Pieri,et al.  Possible involvement of GABA in the central actions of benzodiazepines. , 1975, Psychopharmacology bulletin.

[33]  D. R. Curtis,et al.  Amino acid transmitters in the mammalian central nervous system. , 1974, Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie.

[34]  R. Nicoll,et al.  The pharmacology and ionic dependency of amino acid responses in the frog spinal cord , 1973, The Journal of physiology.