Single molecule detection with graphene and other two-dimensional materials: nanopores and beyond

Graphene and other two dimensional (2D) materials are currently integrated into nanoscaled devices that may – one day – sequence genomes.

[1]  C. Dekker,et al.  1/f noise in graphene nanopores , 2015, Nanotechnology.

[2]  R. Bashir,et al.  Slowing DNA Transport Using Graphene–DNA Interactions , 2015, Advanced functional materials.

[3]  M. Furuhashi,et al.  Detection of post-translational modifications in single peptides using electron tunnelling currents. , 2014, Nature nanotechnology.

[4]  Luke P. Lee,et al.  Graphene nanopore with a self-integrated optical antenna. , 2014, Nano letters.

[5]  N. Aluru,et al.  DNA base detection using a single-layer MoS2. , 2014, ACS nano.

[6]  Ke Liu,et al.  Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. , 2014, ACS nano.

[7]  C Raillon,et al.  Detecting the translocation of DNA through a nanopore using graphene nanoribbons. , 2013, Nature nanotechnology.

[8]  Ki-Bum Kim,et al.  Noise and its reduction in graphene based nanopore devices , 2013, Nanotechnology.

[9]  Qiang Xu,et al.  Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation , 2013, Nature Communications.

[10]  Qing Zhao,et al.  Boron Nitride Nanopores: Highly Sensitive DNA Single‐Molecule Detectors , 2013, Advanced materials.

[11]  D. Branton,et al.  Molecule-hugging graphene nanopores , 2013, Proceedings of the National Academy of Sciences.

[12]  Yuhui He Graphene/hexagonal Boron Nitride/Graphene Nanopore for Electrical Detection of Single Molecules , 2013 .

[13]  Juekuan Yang,et al.  Molecular dynamics study of DNA translocation through graphene nanopores. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Yin Zhang,et al.  Nanopore detection of DNA molecules in magnesium chloride solutions , 2013, Nanoscale Research Letters.

[15]  Cees Dekker,et al.  Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature. , 2013, ACS nano.

[16]  R. Wu,et al.  The impact of the number of layers of a graphene nanopore on DNA translocation , 2013 .

[17]  R. Wu,et al.  The layer impact of DNA translocation through graphene nanopores , 2012, 1210.4993.

[18]  Aleksei Aksimentiev,et al.  Assessing graphene nanopores for sequencing DNA. , 2012, Nano letters.

[19]  M. Taniguchi,et al.  Bilayer Graphene Lateral Contacts for DNA Sequencing , 2012, 1206.4199.

[20]  M. Wanunu Nanopores: A journey towards DNA sequencing. , 2012, Physics of Life Reviews.

[21]  C. Russo,et al.  Atom-by-atom nucleation and growth of graphene nanopores , 2012, Proceedings of the National Academy of Sciences.

[22]  C. Dekker,et al.  DNA sequencing with nanopores , 2012, Nature Biotechnology.

[23]  K. Saha,et al.  DNA base-specific modulation of $\mu$A transverse edge currents through a metallic graphene nanoribbon with a nanopore , 2012 .

[24]  E. Pop,et al.  Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA and DNA-protein complexes. , 2012, ACS nano.

[25]  M. Drndić,et al.  DNA base-specific modulation of microampere transverse edge currents through a metallic graphene nanoribbon with a nanopore. , 2011, Nano letters.

[26]  Klaus Schulten,et al.  Computational investigation of DNA detection using graphene nanopores. , 2011, ACS nano.

[27]  X. Guan,et al.  Translocation of single‐stranded DNA through the α‐hemolysin protein nanopore in acidic solutions , 2011, Electrophoresis.

[28]  Cees Dekker,et al.  Modeling the conductance and DNA blockade of solid-state nanopores , 2011, Nanotechnology.

[29]  Henny W. Zandbergen,et al.  Atomic-Scale Electron-Beam Sculpting of Defect-Free Graphene Nanostructures , 2011, Microscopy and Microanalysis.

[30]  Kwang S. Kim,et al.  Fast DNA sequencing with a graphene-based nanochannel device. , 2011, Nature nanotechnology.

[31]  C. Dekker,et al.  Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures. , 2011, Nano letters.

[32]  Rajeev Ahuja,et al.  Transverse conductance of DNA nucleotides in a graphene nanogap from first principles. , 2010, Nano letters.

[33]  Neil Peterman,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[34]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2010, Nature nanotechnology.

[35]  A. Reina,et al.  Graphene as a sub-nanometer trans-electrode membrane , 2010, Nature.

[36]  Grégory Pandraud,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[37]  L. Vandersypen,et al.  Wedging transfer of nanostructures. , 2010, Nano letters.

[38]  M. Taniguchi,et al.  Identifying single nucleotides by tunnelling current. , 2010, Nature nanotechnology.

[39]  Bo Zhang,et al.  Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device. , 2010, Nano letters.

[40]  R. Bistritzer,et al.  Transport Between Twisted Graphene Layers , 2010, 1002.2983.

[41]  H. Postma,et al.  Rapid sequencing of individual DNA molecules in graphene nanogaps. , 2008, Nano letters.

[42]  P. Kim,et al.  Performance of monolayer graphene nanomechanical resonators with electrical readout. , 2009, Nature nanotechnology.

[43]  Makusu Tsutsui,et al.  Fabrication of 0.5 nm electrode gaps using self-breaking technique , 2008 .

[44]  Marija Drndic,et al.  Electron beam nanosculpting of suspended graphene sheets , 2008 .

[45]  N H Dekker,et al.  Noise in solid-state nanopores , 2008, Proceedings of the National Academy of Sciences.

[46]  M. Di Ventra,et al.  Influence of the environment and probes on rapid DNA sequencing via transverse electronic transport. , 2007, Biophysical journal.

[47]  R. Ahuja,et al.  Functionalized nanopore-embedded electrodes for rapid DNA sequencing , 2007, 0708.4011.

[48]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[49]  T. Kawai,et al.  Visualization of detailed structures within DNA , 2003 .

[50]  M. Razavy,et al.  Quantum Theory of Tunneling , 2003 .

[51]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[52]  J. Hall Access resistance of a small circular pore , 1975, The Journal of general physiology.