Extending ALS-Based Mapping of Forest Attributes with Medium Resolution Satellite and Environmental Data

[1]  Joanne C. White,et al.  The role of LiDAR in sustainable forest management , 2008 .

[2]  M. Holopainen,et al.  Model-assisted estimation of growing stock volume using different combinations of LiDAR and Landsat data as auxiliary information , 2015 .

[3]  Yves Tillé,et al.  Doubly balanced spatial sampling with spreading and restitution of auxiliary totals , 2013 .

[4]  H. Andersen,et al.  Using multilevel remote sensing and ground data to estimate forest biomass resources in remote regions: a case study in the boreal forests of interior Alaska , 2011 .

[5]  Guoqing Sun,et al.  Taking stock of circumboreal forest carbon with ground measurements, airborne and spaceborne LiDAR , 2013 .

[6]  Warren B. Cohen,et al.  Relationship between LiDAR-derived forest canopy height and Landsat images , 2010 .

[7]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[8]  A. Hudak,et al.  Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data , 2008 .

[9]  A. Pekkarinen,et al.  Estimation of forest stand volumes by Landsat TM imagery and stand-level field-inventory data , 2004 .

[10]  Guoqing Sun,et al.  Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America1 , 2015 .

[11]  Joanne C. White,et al.  Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots , 2018 .

[12]  Grant M. Domke,et al.  Evaluating Site-Specific and Generic Spatial Models of Aboveground Forest Biomass Based on Landsat Time-Series and LiDAR Strip Samples in the Eastern USA , 2017, Remote. Sens..

[13]  Cardona Alzate,et al.  Predicción y selección de variables con bosques aleatorios en presencia de variables correlacionadas , 2020 .

[14]  T. Breurch,et al.  A simple test for heteroscedasticity and random coefficient variation (econometrica vol 47 , 1979 .

[15]  J. Hyyppä,et al.  Review of methods of small‐footprint airborne laser scanning for extracting forest inventory data in boreal forests , 2008 .

[16]  Richard A. Fournier,et al.  Predicting wood quantity and quality attributes of balsam fir and black spruce using airborne laser scanner data , 2014 .

[17]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[18]  Ronald E. McRoberts,et al.  Estimating forest attribute parameters for small areas using nearest neighbors techniques , 2012 .

[19]  R. Fournier,et al.  A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland , 2006 .

[20]  H. Andersen,et al.  Prediction of Forest Attributes with Field Plots, Landsat, and a Sample of Lidar Strips , 2014 .

[21]  Qi Chen,et al.  A Forest Attribute Mapping Framework: A Pilot Study in a Northern Boreal Forest, Northwest Territories, Canada , 2018, Remote. Sens..

[22]  W. Cohen,et al.  Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height , 2002 .

[23]  Michael J. Falkowski,et al.  A review of methods for mapping and prediction of inventory attributes for operational forest management , 2014 .

[24]  Nicholas C. Coops,et al.  Lidar plots — a new large-area data collection option: context, concepts, and case study , 2012 .

[25]  F. Raulier,et al.  Canadian national tree aboveground biomass equations , 2005 .

[26]  J. Holmgren Prediction of tree height, basal area and stem volume in forest stands using airborne laser scanning , 2004 .

[27]  Joanne C. White,et al.  Remote Sensing Technologies for Enhancing Forest Inventories: A Review , 2016 .

[28]  K. Lim,et al.  Operational implementation of a LiDAR inventory in Boreal Ontario , 2011 .

[29]  J. Royston The W Test for Normality , 1982 .

[30]  R. Nelson,et al.  Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. , 2008 .

[31]  Göran Ståhl,et al.  Generalized Hierarchical Model-Based Estimation for Aboveground Biomass Assessment Using GEDI and Landsat Data , 2018, Remote. Sens..

[32]  W. Wagner,et al.  Operational wide-area stem volume estimation based on airborne laser scanning and national forest inventory data , 2009 .

[33]  R. Valbuena,et al.  Forest canopy height retrieval using LiDAR data, medium-resolution satellite imagery and kNN estimation in Aberfoyle, Scotland , 2010 .

[34]  E. Næsset Airborne laser scanning as a method in operational forest inventory: Status of accuracy assessments accomplished in Scandinavia , 2007 .

[35]  B. Koch,et al.  Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived predictors , 2010 .

[36]  Gherardo Chirici,et al.  A meta-analysis and review of the literature on the k-Nearest Neighbors technique for forestry applications that use remotely sensed data , 2016 .

[37]  Liviu Theodor Ene,et al.  Comparing Empirical and Semi-Empirical Approaches to Forest Biomass Modelling in Different Biomes Using Airborne Laser Scanner Data , 2017 .

[38]  R. Fournier,et al.  Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data , 2015 .

[39]  Thomas R. Crow,et al.  Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA , 2004 .

[40]  D. Pitt,et al.  Parametric vs. nonparametric LiDAR models for operational forest inventory in boreal Ontario , 2013 .

[41]  Neal A. Scott,et al.  Characterizing Forest Succession in Central Ontario using Lidar-derived Indices , 2011 .

[42]  Michele Dalponte,et al.  Airborne laser scanning of forest resources: An overview of research in Italy as a commentary case study , 2013, Int. J. Appl. Earth Obs. Geoinformation.

[43]  R. Nelson,et al.  Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations , 2017 .

[44]  Nicholas C. Coops,et al.  Updating stand-level forest inventories using airborne laser scanning and Landsat time series data , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[45]  Ram K. Deo,et al.  Using Landsat Time-Series and LiDAR to Inform Aboveground Forest Biomass Baselines in Northern Minnesota, USA , 2017 .

[46]  S. Goetz,et al.  Laser remote sensing of canopy habitat heterogeneity as a predictor of bird species richness in an eastern temperate forest, USA , 2006 .

[47]  Terje Gobakken,et al.  Improved estimates of forest vegetation structure and biomass with a LiDAR‐optimized sampling design , 2009 .

[48]  K. Rose,et al.  Model goodness-of-fit analysis using regression and related techniques , 1995 .

[49]  GrafströmAnton,et al.  Improving forest field inventories by using remote sensing data in novel sampling designs , 2013 .

[50]  Joanne C. White,et al.  Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada , 2016 .

[51]  Q. Vuong Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses , 1989 .

[52]  E. Næsset,et al.  Remote sensing and forest inventories in Nordic countries – roadmap for the future , 2018 .

[53]  W. Cohen,et al.  Using Landsat-derived disturbance and recovery history and lidar to map forest biomass dynamics , 2014 .

[54]  R. Turner,et al.  Application of LiDAR data to maximise the efficiency of inventory plots in softwood plantations , 2015, New Zealand Journal of Forestry Science.

[55]  P. Gessler,et al.  Regression modeling and mapping of coniferous forest basal area and tree density from discrete-return lidar and multispectral satellite data , 2006 .

[56]  M. Nilsson,et al.  Combining national forest inventory field plots and remote sensing data for forest databases , 2008 .

[57]  Nicholas C. Coops,et al.  Demonstrating the transferability of forest inventory attribute models derived using airborne laser scanning data , 2019, Remote Sensing of Environment.

[58]  Göran Ståhl,et al.  Estimating Quebec provincial forest resources using ICESat/GLAS , 2009 .

[59]  Alessandro Montaghi,et al.  Use of ETM+ images to extend stem volume estimates obtained from LiDAR data , 2011 .

[60]  StinsonG.,et al.  Mapping attributes of Canada’s forests at moderate resolution through kNN and MODIS imagery , 2014 .

[61]  Remo Bertani,et al.  Exploiting the capabilities of the Sentinel-2 multi spectral instrument for predicting growing stock volume in forest ecosystems , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[62]  C. Ramirez,et al.  A New Approach to Extrapolate Forest Attributes from Field Inventory with Satellite and Auxiliary Data Sets , 2017 .

[63]  A. Hudak,et al.  Corrigendum to “Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data”[Remote Sensing of Environment, 112: 2232–2245] , 2009 .

[64]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[65]  J. Paruelo,et al.  How to evaluate models : Observed vs. predicted or predicted vs. observed? , 2008 .

[66]  Terje Gobakken,et al.  Different plot selection strategies for field training data in ALS-assisted forest , 2010 .

[67]  E. Næsset,et al.  Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser , 2008 .

[68]  David Saah,et al.  Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates , 2012 .

[69]  R. Lucas,et al.  New global forest/non-forest maps from ALOS PALSAR data (2007–2010) , 2014 .

[70]  Göran Ståhl,et al.  Hybrid three-phase estimators for large-area forest inventory using ground plots, airborne lidar, and space lidar , 2017 .