On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems

This paper concerns periodic multiscale homogenization for fully nonlinear equations of the form $u^\epsilon+H^\epsilon (x,\frac{x}{\epsilon},\ldots,\frac{x}{epsilon^k},Du^\epsilon,D^2u^\epsilon)=0$. The operators $H^\epsilon$ are a regular perturbations of some uniformly elliptic, convex operator $H$. As $\epsilon\to 0^+$, the solutions $u^\epsilon$ converge locally uniformly to the solution $u$ of a suitably defined effective problem. The purpose of this paper is to obtain an estimate of the corresponding rate of convergence. Finally, some examples are discussed.

[1]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[2]  O. A. Ladyzhenskai︠a︡,et al.  Linear and quasilinear elliptic equations , 1968 .

[3]  Panagiotis E. Souganidis,et al.  Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications , 2005 .

[4]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[5]  L. Evans Periodic homogenisation of certain fully nonlinear partial differential equations , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[6]  M. Bardi,et al.  Singular Perturbations of Nonlinear Degenerate Parabolic PDEs: a General Convergence Result , 2003 .

[7]  Panagiotis E. Souganidis,et al.  Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media , 2005 .

[8]  Anneliese Defranceschi,et al.  Homogenization of Multiple Integrals , 1999 .

[9]  Panagiotis E. Souganidis,et al.  Homogenization of “Viscous” Hamilton–Jacobi Equations in Stationary Ergodic Media , 2005 .

[10]  Claudio Marchi,et al.  Rate of convergence for multiscale homogenization of Hamilton—Jacobi equations , 2009, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[11]  Hitoshi Ishii,et al.  On the rate of convergence in homogenization of Hamilton-Jacobi equations , 2001 .

[12]  L. Evans The perturbed test function method for viscosity solutions of nonlinear PDE , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[13]  Martino Bardi,et al.  Viscosity Solutions Methods for Singular Perturbations in Deterministic and Stochastic Control , 2001, SIAM J. Control. Optim..

[14]  Martino Bardi,et al.  Ergodicity, Stabilization, and Singular Perturbations for Bellman-Isaacs Equations , 2010 .

[15]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[16]  M. Safonov,et al.  ON THE CLASSICAL SOLUTION OF NONLINEAR ELLIPTIC EQUATIONS OF SECOND ORDER , 1989 .

[17]  N. Krylov On the rate of convergence of finite-difference approximations for Bellmans equations with variable coefficients , 2000 .

[18]  Fabio Camilli,et al.  Rates of convergence in periodic homogenization of fully nonlinear uniformly elliptic PDEs , 2009 .

[19]  Martino Bardi,et al.  MULTISCALE SINGULAR PERTURBATIONS AND HOMOGENIZATION OF OPTIMAL CONTROL PROBLEMS , 2007 .

[20]  P. Lions,et al.  ON ERGODIC STOCHASTIC CONTROL , 1998 .

[21]  Martino Bardi,et al.  Multiscale problems and homogenization for second-order Hamilton-Jacobi equations , 2007 .

[22]  Guy Barles,et al.  On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations , 2002 .

[23]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[24]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .