Accelerating Benders decomposition for short-term hydropower maintenance scheduling

Abstract Maintenance of power generators is essential for reliable and efficient electricity production. Because generators under maintenance are typically inactive, optimal planning of maintenance activities must consider the impact of maintenance outages on the system operation. However, in hydropower systems finding a minimum cost maintenance schedule is a challenging optimization problem due to the uncertainty of the water inflows and the nonlinearity of the hydroelectricity production. Motivated by an industrial application problem, we formulate the hydropower maintenance scheduling problem as a two-stage stochastic program, and we implement a parallelized Benders decomposition algorithm for its solution. We obtain convex subproblems by approximating the hydroelectricity production using linear inequalities and indicator variables, which account for the nonlinear effect of the number of active generators in the solution. For speeding up the execution of our decomposition algorithm, we tailor and test seven techniques, including three new applications of special ordered sets, presolve and warm start for Benders acceleration. Given the large number of possible configurations of these acceleration techniques, we illustrate the application of statistical methods and computational experiments to identify the best performing configuration, which achieved a fourfold speedup of the decomposition algorithm. Results in an industrial setting confirm the high scalability on the number of scenarios of our parallelized Benders implementation.

[1]  Robert E. Bixby,et al.  MIP: Theory and Practice - Closing the Gap , 1999, System Modelling and Optimization.

[2]  Stavros A. Zenios,et al.  Scalable Parallel Benders Decomposition for Stochastic Linear Programming , 1997, Parallel Comput..

[3]  Antonio J. Conejo,et al.  Self-Scheduling of a Hydro Producer in a Pool-Based Electricity Market , 2002, IEEE Power Engineering Review.

[4]  V.M.F. Mendes,et al.  Scheduling of head-sensitive cascaded hydro systems: A nonlinear approach , 2009, 2009 IEEE Power & Energy Society General Meeting.

[5]  Matteo Fischetti,et al.  Redesigning Benders Decomposition for Large-Scale Facility Location , 2017, Manag. Sci..

[6]  Maria Grazia Scutellà,et al.  A branch-and-Benders-cut method for nonlinear power design in green wireless local area networks , 2016, Eur. J. Oper. Res..

[7]  Leon S. Lasdon,et al.  Optimization Theory of Large Systems , 1970 .

[8]  Domenico Salvagnin,et al.  Implementing Automatic Benders Decomposition in a Modern MIP Solver , 2020, IPCO.

[9]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[10]  Jean-François Cordeau,et al.  Benders Decomposition for Simultaneous Aircraft Routing and Crew Scheduling , 2000, Transp. Sci..

[11]  J. Hooker,et al.  Logic-based Benders decomposition , 2003 .

[12]  Stephen J. Wright,et al.  Decomposition Algorithms for Stochastic Programming on a Computational Grid , 2001, Comput. Optim. Appl..

[13]  Thomas L. Magnanti,et al.  Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria , 1981, Oper. Res..

[14]  Der-San Chen,et al.  Applied Integer Programming: Modeling and Solution , 2010 .

[15]  Angus R. Simpson,et al.  Ant colony optimization for power plant maintenance scheduling optimization—a five-station hydropower system , 2008, Ann. Oper. Res..

[16]  N. Amjady,et al.  Non-convex security constrained optimal power flow by a new solution method composed of Benders decomposition and special ordered sets , 2014 .

[17]  Salvador Perez Canto,et al.  Application of Benders' decomposition to power plant preventive maintenance scheduling , 2008, Eur. J. Oper. Res..

[18]  M.E.P. Maceira,et al.  A Four-Dimensional Model of Hydro Generation for the Short-Term Hydrothermal Dispatch Problem Considering Head and Spillage Effects , 2008, IEEE Transactions on Power Systems.

[19]  Michael Poss,et al.  An improved Benders decomposition applied to a multi-layer network design problem , 2009, Oper. Res. Lett..

[20]  Teodor Gabriel Crainic,et al.  Partial Benders Decomposition Strategies for Two-Stage Stochastic Integer Programs , 2016 .

[21]  M. M. Morcos,et al.  An adaptive fuzzy technique for learning power-quality signature waveforms , 2001 .

[22]  Jean-François Cordeau,et al.  Benders decomposition for very large scale partial set covering and maximal covering location problems , 2019, Eur. J. Oper. Res..

[23]  Charles Audet,et al.  Self-Scheduling Short-Term Unit Commitment and Loading Problem , 2016, IEEE Transactions on Power Systems.

[24]  Michel Gendreau,et al.  The Benders decomposition algorithm: A literature review , 2017, Eur. J. Oper. Res..

[25]  Achim Koberstein,et al.  Dynamic sequencing and cut consolidation for the parallel hybrid-cut nested L-shaped method , 2013, Eur. J. Oper. Res..

[26]  J. F. Benders Partitioning procedures for solving mixed-variables programming problems , 1962 .

[27]  Michel Gendreau,et al.  Decision rule approximations for the risk averse reservoir management problem , 2017, Eur. J. Oper. Res..

[28]  Santiago Cerisola,et al.  Stochastic dual dynamic programming applied to nonconvex hydrothermal models , 2012, Eur. J. Oper. Res..

[29]  R. Charbonneau,et al.  THE CEQUEAU MODEL: DESCRIPTION AND EXAMPLES OF ITS USE IN PROBLEMS RELATED TO WATER RESOURCE MANAGEMENT / Le modèle CEQUEAU: description et exemples d'utilisation dans le cadre de problèmes reliés à l'aménagement , 1977 .

[30]  Arild Helseth,et al.  Optimal Hydropower Maintenance Scheduling in Liberalized Markets , 2018, IEEE Transactions on Power Systems.

[31]  E.L. da Silva,et al.  Solving the hydro unit commitment problem via dual decomposition and sequential quadratic programming , 2006, IEEE Transactions on Power Systems.

[32]  K. Beven Rainfall-Runoff Modelling: The Primer , 2012 .

[33]  Xiangjing Su,et al.  Mid‐term integrated generation and maintenance scheduling for wind‐hydro‐thermal systems , 2018 .

[34]  David P. Morton,et al.  An enhanced decomposition algorithm for multistage stochastic hydroelectric scheduling , 1996, Ann. Oper. Res..

[35]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[36]  Steffen Rebennack,et al.  Dynamic convexification within nested Benders decomposition using Lagrangian relaxation: An application to the strategic bidding problem , 2017, Eur. J. Oper. Res..

[37]  Michel Gendreau,et al.  Maintenance scheduling in the electricity industry: A literature review , 2016, Eur. J. Oper. Res..

[38]  A. Ruszczynski,et al.  Accelerating the regularized decomposition method for two stage stochastic linear problems , 1997 .

[39]  Ted K. Ralphs,et al.  A Generalization of Benders’ Algorithm for Two-Stage Stochastic Optimization Problems With Mixed Integer Recourse , 2014 .

[40]  Mohamed Haouari,et al.  Discrete time/cost trade-off problem: A decomposition-based solution algorithm for the budget version , 2010, Comput. Oper. Res..

[41]  Guy Desaulniers,et al.  MILP Formulations for Generator Maintenance Scheduling in Hydropower Systems , 2017, IEEE Transactions on Power Systems.

[42]  Charles Audet,et al.  Stochastic short-term hydropower planning with inflow scenario trees , 2017, Eur. J. Oper. Res..

[43]  Marc Goetschalckx,et al.  A stochastic programming approach for supply chain network design under uncertainty , 2004, Eur. J. Oper. Res..

[44]  Charles Audet,et al.  Scenario tree modeling for stochastic short-term hydropower operations planning , 2016 .

[45]  A. Borghetti,et al.  An MILP Approach for Short-Term Hydro Scheduling and Unit Commitment With Head-Dependent Reservoir , 2008, IEEE Transactions on Power Systems.

[46]  Michel Gendreau,et al.  Long‐term management of a hydroelectric multireservoir system under uncertainty using the progressive hedging algorithm , 2013 .

[47]  M. V. F. Pereira,et al.  Multi-stage stochastic optimization applied to energy planning , 1991, Math. Program..

[48]  Nikolaos Papadakos,et al.  Practical enhancements to the Magnanti-Wong method , 2008, Oper. Res. Lett..

[49]  Matteo Fischetti,et al.  Combinatorial Benders' Cuts for Mixed-Integer Linear Programming , 2006, Oper. Res..