A High-Order Central ENO Finite-Volume Scheme for Three-Dimensional Turbulent Reactive Flows on Unstructured Mesh

High-order discretization techniques offer the potential to significantly reduce the computational costs necessary to obtain accurate predictions when compared to lower-order methods. However, efficient, universallyapplicable, high-order discretizations remain somewhat illusive, especially for more arbitrary unstructured meshes and for large-eddy simulation (LES) of turbulent reacting flows. A novel, high-order, central essentially non-oscillatory (CENO), cell-centered, finite-volume scheme is proposed for the solution of the conservation equations of turbulent, reactive, low speed flows on three-dimensional unstructured meshes. The proposed scheme is applied to the pseudo-compressibility formulation of the Favre-filtered governing equations and the resulting discretized equations are solved with a parallel implicit Newton-Krylov algorithm. Temporal derivatives are discretized using the family of high-order backward difference formulas (BDF) and the resulting equations are solved via a dual-time stepping approach. Large-eddy simulations of a laboratory-scale turbulent flame is carried out and the proposed finite-volume scheme is validated against experimental measurements. The high-order scheme is demonstrated to provide both reliable and accurate solutions for complex turbulent reactive flows.

[1]  I. Shepherd Flame surface density and burning rate in premixed turbulent flames , 1995 .

[2]  Claus-Dieter Munz,et al.  A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes , 2007, J. Comput. Phys..

[3]  Carlos A. Felippa,et al.  A compendium of FEM integration formulas for symbolic work , 2004 .

[4]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[5]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[6]  Clinton P. T. Groth,et al.  High-Order CENO Finite-Volume Schemes for Multi-Block Unstructured Mesh , 2011 .

[7]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[8]  C. Ollivier-Gooch,et al.  A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation , 2002 .

[9]  Sergio Pirozzoli,et al.  On the spectral properties of shock-capturing schemes , 2006, J. Comput. Phys..

[10]  J. Sachdev,et al.  A parallel solution-adaptive scheme for multi-phase core flows in solid propellant rocket motors , 2005 .

[11]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[12]  Y. Saad,et al.  Krylov Subspace Methods on Supercomputers , 1989 .

[13]  Clinton P. T. Groth,et al.  A computational framework for predicting laminar reactive flows with soot formation , 2010 .

[14]  K. Powell,et al.  Solution-Adaptive Cartesian Cell Approach for Viscous and Inviscid Flows , 1996 .

[15]  E. R. V. Driest On Turbulent Flow Near a Wall , 1956 .

[16]  Charles Merkle,et al.  Time-accurate unsteady incompressible flow algorithms based on artificial compressibility , 1987 .

[17]  Caskey,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS I . THE BASIC EXPERIMENT , 1962 .

[18]  Lucian Ivan,et al.  Development of High-order CENO Finite-volume Schemes with Block-based Adaptive Mesh Refinement (AMR) , 2011 .

[19]  Ö. Gülder,et al.  Investigation of Dynamics of Lean Turbulent Premixed Flames by Rayleigh Imaging , 2009 .

[20]  Yousef Saad,et al.  Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..

[21]  U. Piomelli,et al.  Two-layer approximate boundary conditions for large-eddy simulations , 1996 .

[22]  Zhi J. Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids. Basic Formulation , 2002 .

[23]  Philip L. Roe,et al.  Efficient construction and utilisation of approximate riemann solutions , 1985 .

[24]  O. Friedrich,et al.  Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids , 1998 .

[25]  B. Hjertager,et al.  On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion , 1977 .

[26]  C. P. T. Groth,et al.  High-Order CENO Finite-Volume Scheme for Low-Speed Viscous Flows on Three-Dimensional Unstructured Mesh , 2011 .

[27]  Rémi Abgrall,et al.  On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation , 1994 .

[28]  Seungsoo Lee,et al.  Convergence Characteristics of Upwind Method for Modified Artificial Compressibility Method , 2011 .

[29]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[30]  Timothy J. Barth,et al.  Recent developments in high order K-exact reconstruction on unstructured meshes , 1993 .

[31]  D. Stanescu,et al.  Essentially Nonoscillatory Euler Solutions on Unstructured Meshes Using Extrapolation , 1998 .

[32]  George Karypis,et al.  Parmetis parallel graph partitioning and sparse matrix ordering library , 1997 .

[33]  S. Benhamadouche,et al.  A synthetic-eddy-method for generating inflow conditions for large-eddy simulations , 2006 .

[34]  Clinton P. T. Groth,et al.  International Journal of Computational Fluid Dynamics a Parallel Adaptive Mesh Refinement Algorithm for Predicting Turbulent Non-premixed Combusting Flows a Parallel Adaptive Mesh Refinement Algorithm for Predicting Turbulent Non-premixed Combusting Flows , 2022 .

[35]  Carl Ollivier-Gooch,et al.  High-order ENO schemes for unstructured meshes based on least-squares reconstruction , 1997 .

[36]  Rainald Löhner,et al.  A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids , 2007, J. Comput. Phys..

[37]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[38]  Z. Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids , 2002 .

[39]  Stuart E. Rogers,et al.  Steady and unsteady solutions of the incompressible Navier-Stokes equations , 1991 .

[40]  V. Venkatakrishnan On the accuracy of limiters and convergence to steady state solutions , 1993 .

[41]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[42]  Andreas Haselbacher,et al.  A WENO Reconstruction Algorithim for Unstructured Grids Based on Explicit Stencil Construction , 2005 .

[43]  Carl Ollivier-Gooch,et al.  A high-order accurate unstructured finite volume Newton-Krylov algorithm for inviscid compressible flows , 2008, J. Comput. Phys..

[44]  U. Piomelli,et al.  Wall-layer models for large-eddy simulations , 2008 .

[45]  Chongam Kim,et al.  Multi-dimensional limiting process for hyperbolic conservation laws on unstructured grids , 2005, J. Comput. Phys..

[46]  D. Spalding Mixing and chemical reaction in steady confined turbulent flames , 1971 .

[47]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[48]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[49]  Scott Northrup,et al.  Parallel solution-adaptive method for two dimensional non-premixed combusting flows , 2011 .

[50]  Luc Vervisch,et al.  DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry , 2005 .

[51]  Scott Northrup,et al.  Parallel Implicit Adaptive Mesh Refinement Scheme for Body-Fitted Multi-Block Mesh , 2005 .

[52]  Clinton P. T. Groth,et al.  High-Order Central ENO Finite-Volume Scheme with Adaptive Mesh Refinement , 2007 .

[53]  J. D. Wilson,et al.  Shape Functions for Velocity Interpolation in General Hexahedral Cells , 2002 .

[54]  C. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[55]  R. Hartmann,et al.  Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .

[56]  John W. Goodrich,et al.  Unsteady solution of incompressible Navier-Stokes equations , 1988 .

[57]  Ö. Gülder,et al.  Assessment of Presumed PDF Models for Large Eddy Simulation of Turbulent Premixed Flames , 2011 .

[58]  Clinton P. T. Groth,et al.  LES of a laboratory-scale turbulent premixed Bunsen flame using FSD, PCM-FPI and thickened flame models , 2011 .

[59]  Zhi Jian Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids III: One Dimensional Systems and Partition Optimization , 2004, J. Sci. Comput..

[60]  Arnaud G. Malan,et al.  An improved unsteady, unstructured, artificial compressibility, finite volume scheme for viscous incompressible flows: Part II. Application , 2002 .

[61]  Arnaud G. Malan,et al.  An improved unsteady, unstructured, artificial compressibility, finite volume scheme for viscous incompressible flows: Part I. Theory and implementation , 2002 .

[62]  Dimitri J. Mavriplis,et al.  Revisiting the Least-squares Procedure for Gradient Reconstruction on Unstructured Meshes , 2003 .

[63]  Paul Kutler,et al.  Implicit Finite-Difference Procedures for the Computation of Vortex Wakes , 1976 .

[64]  Dochan Kwak,et al.  High-Order Spectral Volume Method for 2D Euler Equations , 2003 .

[65]  Stuart E. Rogers,et al.  Upwind differencing scheme for the time-accurate incompressible Navier-Stokes equations , 1990 .

[66]  D. Wilcox Turbulence modeling for CFD , 1993 .

[67]  Ö. Gülder,et al.  Premixed turbulent flame front structure investigation by Rayleigh scattering in the thin reaction zone regime , 2009 .

[68]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[69]  K. Rhee,et al.  Blackbody radiation functions , 1984 .

[70]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[71]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[72]  Clinton P. T. Groth,et al.  High-Order Solution-Adaptive Central Essentially Non-Oscillatory (CENO) Method for Viscous Flows , 2011 .

[73]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[74]  Z. Qian,et al.  Preconditioned pseudo-compressibility methods for incompressible Navier-Stokes equations , 2010 .

[75]  Clinton P. T. Groth,et al.  Solution of the equation of radiative transfer using a Newton-Krylov approach and adaptive mesh refinement , 2012, J. Comput. Phys..

[76]  A. Jameson Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings , 1991 .

[77]  Clinton P. T. Groth,et al.  A parallel solution - adaptive method for three-dimensional turbulent non-premixed combusting flows , 2010, J. Comput. Phys..

[78]  J. D. Wilson,et al.  Test functions for three-dimensionalcontrol-volume mixed finite element methods on irregular grids , 2000 .

[79]  J. Murthy,et al.  A PRESSURE-BASED METHOD FOR UNSTRUCTURED MESHES , 1997 .

[80]  Yuzhi Sun,et al.  Spectral (finite) volume method for conservation laws on unstructured grids VI: Extension to viscous flow , 2006, J. Comput. Phys..

[81]  Thomas Sonar,et al.  On the construction of essentially non-oscillatory finite volume approximations to hyperbolic conservation laws on general triangulations : polynomial recovery, accuracy and stencil selection , 1997 .

[82]  E. Turkel,et al.  Preconditioned methods for solving the incompressible low speed compressible equations , 1987 .