Shear viscosity of polar fluids: Molecular dynamics calculations of water

The shear viscosity of water at 303.15 K is calculated for the extended simple point charge (SPC/E) model of Berendsen et al. [J. Phys. Chem. 91, 6269 (1987)] using both equilibrium and nonequilibrium molecular dynamics (NEMD) methods. Reciprocal space sums to handle long‐range electrostatic forces in a noncubic simulation box under shear are used in conjunction with box dynamics to evaluate the Coulombic interactions. At the state point studied, the shear viscosity of SPC/E water is found to be 6.6±0.8×10−4 Pa s, which is about 18% less than the experimental value.

[1]  M. Klein,et al.  Profile unbiased thermostat with dynamical streaming velocities , 1996 .

[2]  P. Daivis,et al.  Erratum: Thermostats for molecular fluids undergoing shear flow: Application to liquid chlorine [J. Chem. Phys. 103, 10638 (1995)] , 1996 .

[3]  An efficient parallel algorithm for non-equilibrium molecular dynamics simulations of very large systems in planar Couette flow , 1996 .

[4]  James E. Roberts,et al.  The reaction field method in molecular dynamics simulations of point-polarizable water models , 1996 .

[5]  M. Klein,et al.  Erratum: Decane under shear: A molecular dynamics study using reversible NVT‐SLLOD and NPT‐SLLOD algorithms [J. Chem. Phys. 103, 10192 (1995)] , 1996 .

[6]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[7]  Peter T. Cummings,et al.  Microstructure of ambient and supercritical water. Direct comparison between simulation and neutron scattering experiments , 1996 .

[8]  H. D. Cochran,et al.  Multiple time step nonequilibrium molecular dynamics simulation of the rheological properties of liquid n-decane , 1996 .

[9]  M. Klein,et al.  Decane under shear: A molecular dynamics study using reversible NVT‐SLLOD and NPT‐SLLOD algorithms , 1995 .

[10]  R. Mountain Comparison of a fixed‐charge and a polarizable water model , 1995 .

[11]  S. Neyertz,et al.  A GENERAL PRESSURE TENSOR CALCULATION FOR MOLECULAR DYNAMICS SIMULATIONS , 1995 .

[12]  D. Heyes,et al.  Brownian-dynamics simulations of model stabilised colloidal dispersions under shear , 1995 .

[13]  Wilfred F. van Gunsteren,et al.  Consistent dielectric properties of the simple point charge and extended simple point charge water models at 277 and 300 K , 1994 .

[14]  P. Kusalik,et al.  Dynamics in liquid water, water-d2, and water-t2: a comparative simulation study , 1994 .

[15]  P. Daivis,et al.  Comparison of constant pressure and constant volume nonequilibrium simulations of sheared model decane , 1994 .

[16]  Wilfred F. van Gunsteren,et al.  The viscosity of SPC and SPC/E water at 277 and 300 K , 1993 .

[17]  Robbins,et al.  Simulations of shear-induced melting and ordering. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  P. Kusalik,et al.  Structure in liquid water: A study of spatial distribution functions , 1993 .

[19]  B. Guillot,et al.  A computer simulation study of the liquid–vapor coexistence curve of water , 1993 .

[20]  P. Kusalik,et al.  Dynamical properties of Coulombic systems at low densities: computer simulation results , 1993 .

[21]  Munir S. Skaf,et al.  Computer Simulation of Hydrogen-Bonding Liquids , 1993 .

[22]  Michael P. Allen,et al.  Computer simulation in chemical physics , 1993 .

[23]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[24]  Ladislas P. Kubin,et al.  Computer Simulation in Materials Science , 1991 .

[25]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[26]  Michael L. Klein,et al.  Effective pair potentials and the properties of water , 1989 .

[27]  Ryckaert,et al.  Evaluation of transport coefficients of simple fluids by molecular dynamics: Comparison of Green-Kubo and nonequilibrium approaches for shear viscosity. , 1989, Physical review. A, General physics.

[28]  P. Cummings,et al.  Nonequilibrium molecular dynamics calculation of the shear viscosity of liquid water , 1988 .

[29]  C. L. Cleveland New equations of motion for molecular dynamics systems that change shape , 1988 .

[30]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[31]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[32]  J. Ryckaert,et al.  The shear viscosity of n-butane by equilibrium and non-equilibrium molecular dynamics , 1987 .

[33]  Denis J. Evans,et al.  The Nose–Hoover thermostat , 1985 .

[34]  S. Nosé,et al.  Constant pressure molecular dynamics for molecular systems , 1983 .

[35]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[36]  M. Parrinello,et al.  Crystal structure and pair potentials: A molecular-dynamics study , 1980 .

[37]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[38]  S. Edwards,et al.  The computer study of transport processes under extreme conditions , 1972 .

[39]  Frank H. Stillinger,et al.  Molecular Dynamics Study of Temperature Effects on Water Structure and Kinetics , 1972 .

[40]  J. A. Barker,et al.  Structure of water; A Monte Carlo calculation , 1969 .