Application of hyperspherical coordinates to four‐atom reactive scattering: H2+CN→H+HCN

We develop the use of Delves’ hyperspherical coordinates to study the reactive scattering of four‐atom systems within the collinear approximation. We present quantum mechanical calculations of reaction probabilities for the collinear exothermic reaction H2+CN →H+HCN. We use a potential energy surface which reproduces the essential characteristics of the reaction. The effect of freezing the CN bondlength to its equilibrium value during the reaction is also investigated and is found to be a good approximation. It is found that HCN product vibrational states with the C–H stretch excited are produced preferentially in the reaction.

[1]  W. Miller,et al.  Quantum reactive scattering via the S-matrix version of the Kohn variational principle: Integral cross sections For H+H2(ν1=j1=0)→H2(ν2=1, j2= 1, 3) + H in the energy range Etotal = 0.9–1.4 eV , 1988 .

[2]  W. W Duley Interstellar chemistry , 1984 .

[3]  L. M. Delves,et al.  TERTIARY AND GENERAL-ORDER COLLISIONS , 1958 .

[4]  J. Launay,et al.  Hyperspherical study of the reaction Cs+H2→CsH+H in the rotating linear model , 1989 .

[5]  T. Millar,et al.  Rate Coefficients in Astrochemistry. Proceedings of a Conference held in UMIST, Manchester, United Kingdom, September 21-24, 1987. , 1988 .

[6]  D. Truhlar,et al.  Statistical‐diabatic model for state‐selected reaction rates. Theory and application of vibrational‐mode correlation analysis to OH(nOH)+H2(nHH)→H2O+H , 1982 .

[7]  J. Toennies,et al.  Determination of the absolute scattering cross section for the reaction D + H2(v=1) → HD+H at 0.33 eV , 1987 .

[8]  H. Schaefer F + H/sub 2/ potential energy surface: the ecstasy and the agony , 1985 .

[9]  D. R. Stull JANAF thermochemical tables , 1966 .

[10]  V. Aquilanti,et al.  Nonadiabatic effects in the hyperspherical description of elementary chemical reactions , 1984 .

[11]  J. Hirschfelder,et al.  General Collision Theory Treatment for the Rate of Bimolecular, Gas Phase Reactions , 1959 .

[12]  J. Manz,et al.  Collinear light-atom exchange reactions evaluated by 5-matrix propagation along delves' radial coordinate , 1980 .

[13]  S. Chapman,et al.  An exploratory study of reactant vibrational effects in CH3 + H2 and its isotopic variants , 1975 .

[14]  G. Flynn,et al.  Hot Atoms Revisited: Laser Photolysis and Product Detection , 1986 .

[15]  D. C. Clary,et al.  The Theory of Chemical Reaction Dynamics , 1986 .

[16]  J. Linderberg,et al.  Hyperspherical coordinates in four particle systems , 1983 .

[17]  S. Chapman A theoretical study of the effects of vibration on the reaction O3+NO→O2+NO2 , 1981 .

[18]  T. Dunning,et al.  Theoretical studies of the reactions of HCN with atomic hydrogen , 1985 .

[19]  G. A. Parker,et al.  Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. tests on H+H2 and D+H2 , 1987 .

[20]  H. Gg. Wagner,et al.  Reaktionen von Molekülen in definierten Schwingungszuständen (IV). Reaktionen schwingungsangeregter Cyan-Radikale mit Wasserstoff und einfachen Kohlenwasserstoffen† , 1977 .

[21]  D. Truhlar Potential Energy Surfaces and Dynamics Calculations , 1981 .

[22]  J. Light,et al.  R‐matrix solution of coupled equations for inelastic scattering , 1978 .

[23]  William H. Miller,et al.  Quantum scattering via the S‐matrix version of the Kohn variational principle , 1988 .

[24]  J. Launay,et al.  A quantum-mechanical study of the reaction H+HF(vjmj)→HF(v′j′m′j)+H: Exact and centrifugal decoupling calculations in hyperspherical coordinates , 1988 .

[25]  A. Wagner,et al.  An Ab initio determination of the rate constant for H2 + CN → H + HCN , 1986 .

[26]  D. Bondi,et al.  A new numerical method for collinear quantum reactive scattering using delves' coordinates: application to the H + H2(n ⩽ 7) → H2(m ⩽ 7) + H reaction , 1982 .

[27]  J. Launay,et al.  Quantum study of electronically non-adiabatic collinear reactions. II. Influence of spin-orbit transitions on the F + HH reaction , 1986 .

[28]  V. Aquilanti,et al.  Hyperspherical diabatic and adiabatic representations for chemical reactions , 1982 .

[29]  A. N. Syverud,et al.  JANAF Thermochemical Tables, 1974 Supplement , 1974 .

[30]  Nieh,et al.  Experimental observation of dynamical resonances in the H + H2 reaction. , 1988, Physical review letters.

[31]  D. Kouri,et al.  ℒ2 Solution of the quantum mechanical reactive scattering problem. The threshold energy for D + H2(v = 1) → HD + H , 1986 .

[32]  W. Gentry,et al.  State‐resolved differential cross sections for the reaction D+H2→HD+H , 1987 .

[33]  E. Pollak,et al.  A classical analysis of quantum resonances in isotopic collinear H + H2 reactions , 1982 .

[34]  G. Schatz Quantum reactive scattering using hyperspherical coordinates: Results for H+H2 and Cl+HCl , 1988 .

[35]  J. K. Badenhoop,et al.  A reduced dimensionality quantum reactive scattering study of the insertion reaction O(1D)+H2→OH+H , 1989 .

[36]  R. Bersohn,et al.  Energy distribution of the CN products of the H+HCN, H+ClCN, and F+HCN reactions , 1989 .

[37]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[38]  J. Kress,et al.  Quantum effects in the F+H2→HF+H reaction. Accurate 3D calculations with a realistic potential energy surface , 1989 .

[39]  E. Pollak,et al.  A semiclassical analysis of curvature corrections in quantal collinear reactive scattering , 1984 .

[40]  D. Truhlar,et al.  Exact and Approximate Quantum Mechanical Reaction Probabilities and Rate Constants for the Collinear H + H2 Reaction , 1972 .

[41]  M. Karplus,et al.  Collision Dynamics and the Statistical Theories of Chemical Reactions. I. Average Cross Section from Transition‐State Theory , 1969 .

[42]  J. Light,et al.  On distributed Gaussian bases for simple model multidimensional vibrational problems , 1986 .

[43]  J. Bowman,et al.  Large quantum effects in a model electronically nonadiabatic reaction: Ba + N2O → BaO + N2 , 1976 .

[44]  J. Roemelt,et al.  The collinear F + H2 reaction evaluated by S-matrix propagation along delves' radial coordinate , 1980 .

[45]  A. Kuppermann,et al.  Three‐dimensional quantum mechanical reactive scattering using symmetrized hyperspherical coordinates , 1986 .

[46]  G. Schatz How symmetric stretch excitation in a triatomic molecule can be more efficient than asymmetric stretch excitation in enhancing reaction rates in atomic plus triatom reactions , 1979 .

[47]  J. Manz,et al.  Evaluation of dominant reaction probabilities for collinear hydrogen-transfer reactions , 1984 .

[48]  F. Gadéa,et al.  Quantum study of electronically non-adiabatic collinear reactions. III. Influence of vibrational and electronic excitations on the Cs + HH → CsH + H reaction , 1987 .

[49]  L. M. Delves,et al.  TERTIARY AND GENERAL-ORDER COLLISIONS. PART II , 1960 .

[50]  G. A. Parker,et al.  Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. Theory , 1987 .

[51]  G. Schatz Quantum Effects in Gas Phase Bimolecular Chemical Reactions , 1988 .

[52]  C. Rettner,et al.  H+D2 reaction dynamics. Determination of the product state distributions at a collision energy of 1.3 eV , 1984 .

[53]  J. Kaye,et al.  Hyperspherical coordinates in quantum mechanical collinear reactive scattering , 1980 .

[54]  P. Aker,et al.  State-to-state dynamics of H+HX collisions. I: The H+HX→H2+X (X=Cl, Br, I) abstraction reactions at 1.6 eV collision energy , 1989 .

[55]  J. Manz,et al.  Collinear hydrogen transfer from hydride reactants to nondegenerate products: The F+DBr (v=0) →FD (v’≤7)+Br reaction , 1985 .