Design and Performance of a Microstructured PEEK Reactor for Continuous Poly-L-leucine Catalysed Chalcone Epoxidation

The poly-l-leucine (PLL)-catalysed epoxidation of chalcone allows access to highly enantioselective chalcone epoxides. The reaction requires two steps, a deprotonation step where the oxidising reactive species is formed and an epoxidation step where the substrate is epoxidised. In this work, a microstructured SU-8/PEEK plate flow reactor with a footprint of 110 mm × 85 mm and production rate of ∼0.5 g/day was designed. The reactor consists of two micromixer−reactor sections in series. A staggered herringbone micromixer design was employed for efficient mixing, with channel width, height, and length of 0.2, 0.085, and 40 mm respectively. A mathematical model was used to aid the design, and its predictions were compared with experimental results. The deprotonation and epoxidation steps were performed in reaction channels with width and height of 2 and 0.33 mm, while lengths of 450 and 480 mm provided residence times for the two steps of 30 and 16 min, respectively. The effects of operating temperature, reac...