Brownian Functionals in Physics and Computer Science

This is a brief review on Brownian functionals in one dimension and their various applications, a contribution to the special issue ``The Legacy of Albert Einstein" of Current Science. After a brief description of Einstein's original derivation of the diffusion equation, this article provides a pedagogical introduction to the path integral methods leading to the derivation of the celebrated Feynman-Kac formula. The usefulness of this technique in calculating the statistical properties of Brownian functionals is illustrated with several examples in physics and probability theory, with particular emphasis on applications in computer science. The statistical properties of "first-passage Brownian functionals" and their applications are also discussed.

[1]  C. Mallows,et al.  The inversion enumerator for labeled trees , 1968 .

[2]  M. Yor Some Aspects Of Brownian Motion , 1992 .

[3]  Dhar,et al.  Exactly solved model of self-organized critical phenomena. , 1989, Physical review letters.

[4]  John Lamperti,et al.  An occupation time theorem for a class of stochastic processes , 1958 .

[5]  S. Majumdar,et al.  Exact maximal height distribution of fluctuating interfaces. , 2004, Physical review letters.

[6]  A. Einstein On the Electrodynamics of Moving Bodies , 2005 .

[7]  A. Einstein On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart , 1905 .

[8]  E. Gumbel,et al.  Statistics of extremes , 1960 .

[9]  Large-deviation functions for nonlinear functionals of a Gaussian stationary Markov process. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Zia,et al.  Width distribution for random-walk interfaces. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  M. Yor Exponential Functionals of Brownian Motion and Related Processes , 2001 .

[12]  M. Kac On distributions of certain Wiener functionals , 1949 .

[13]  J. Wellner,et al.  Acknowledgment of Priority : On the Integral of the Absolute Value of the Pinned Wiener Process , 2007 .

[14]  Local and occupation time of a particle diffusing in a random medium. , 2002, Physical review letters.

[15]  Y. Sinai The Limiting Behavior of a One-Dimensional Random Walk in a Random Medium , 1983 .

[16]  Edward M. Wright,et al.  The number of connected sparsely edged graphs , 1977, J. Graph Theory.

[17]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[18]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[19]  M. J. Kearney,et al.  On the area under a continuous time Brownian motion till its first-passage time , 2005, cond-mat/0501445.

[20]  Jean Desbois,et al.  TOPICAL REVIEW: Functionals of Brownian motion, localization and metric graphs , 2005 .

[21]  A. Watson Statistical Mechanics: Persistence Pays Off in Defining History of Diffusion , 1996 .

[22]  Donald E. Knuth,et al.  The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .

[23]  Yicheng Zhang,et al.  Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics , 1995 .

[24]  Plischke,et al.  Width distribution for (2+1)-dimensional growth and deposition processes. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  A. Barabasi,et al.  Fractal concepts in surface growth , 1995 .

[26]  D. A. Darling On the Supremum of a Certain Gaussian Process , 1983 .

[27]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[28]  A. J. Guttmann,et al.  LETTER TO THE EDITOR: Scaling function and universal amplitude combinations for self-avoiding polygons , 2001 .

[29]  C. Richard Area distribution of the planar random loop boundary , 2003, cond-mat/0311346.

[30]  J. Witkowski Comets and their Origin , 1952, Nature.

[31]  S. Edwards,et al.  The surface statistics of a granular aggregate , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[32]  On the Statistical Loss of Long Period Comets from the Solar System, II , 1961 .

[33]  P. Levy Sur certains processus stochastiques homogènes , 1940 .

[34]  100 years of Einstein’s theory of Brownian motion: From pollen grains to protein trains —2 , 2005, cond-mat/0504610.

[35]  J. Wellner,et al.  On the distribution of Brownian areas , 1996 .

[36]  G Korniss,et al.  Extreme fluctuations in small-world networks with relaxational dynamics. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[38]  LETTER TO THE EDITOR: The exact distribution of the oscillation period in the underdamped one-dimensional Sinai model , 2001, cond-mat/0110508.

[39]  A. Aronov,et al.  Effects of electron-electron collisions with small energy transfers on quantum localisation , 1982 .

[40]  Zhang,et al.  Dynamic scaling of growing interfaces. , 1986, Physical review letters.

[41]  David S. Dean,et al.  Exact Solution of a Drop-push Model for Percolation , 2002, Physical review letters.

[42]  Philippe Flajolet,et al.  On the Analysis of Linear Probing Hashing , 1998, Algorithmica.

[43]  M. Smoluchowski Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen , 1906 .

[44]  Erwin Frey,et al.  Brownian motion: a paradigm of soft matter and biological physics , 2005, Annalen der Physik.

[45]  Cornell,et al.  Nontrivial Exponent for Simple Diffusion. , 1996, Physical review letters.

[46]  M. Yor,et al.  Exponential functionals of Brownian motion and disordered systems , 1996, Journal of Applied Probability.

[47]  Satya N. Majumdar Persistence in nonequilibrium systems , 1999 .

[48]  Exact occupation time distribution in a non-Markovian sequence and its relation to spin glass models. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  S. Majumdar,et al.  Exact asymptotic results for persistence in the Sinai model with arbitrary drift. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  M. Yor,et al.  BESSEL PROCESSES, ASIAN OPTIONS, AND PERPETUITIES , 1993 .

[51]  Marc Yor,et al.  Some asymptotic properties of the local time of the uniform empirical process , 1999 .

[52]  M. J. Kearney On a random area variable arising in discrete-time queues and compact directed percolation , 2004 .

[53]  P. Levy Le mouvement brownien , 1955 .

[54]  Residence time distribution for a class of Gaussian Markov processes. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[55]  Donald E. Knuth,et al.  The Art of Computer Programming, Vol. 3: Sorting and Searching , 1974 .

[56]  Golan Bel,et al.  Weak Ergodicity Breaking in the Continuous-Time Random Walk , 2005 .

[57]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[58]  I M Sokolov,et al.  From diffusion to anomalous diffusion: a century after Einstein's Brownian motion. , 2005, Chaos.

[59]  S Raychaudhuri,et al.  Maximal height scaling of kinetically growing surfaces. , 2001, Physical review letters.

[60]  Lajos Takács,et al.  A bernoulli excursion and its various applications , 1991, Advances in Applied Probability.

[61]  Large deviations and nontrivial exponents in coarsening systems , 1997, cond-mat/9712178.

[62]  Satya N. Majumdar,et al.  Airy Distribution Function: From the Area Under a Brownian Excursion to the Maximal Height of Fluctuating Interfaces , 2004, cond-mat/0409566.

[63]  Guy Louchard,et al.  KAC'S FORMULA, LEVY'S LOCAL TIME AND BROWNIAN EXCURSION , 1984 .

[64]  Guy Louchard,et al.  Analytic Variations on the Airy Distribution , 2001, Algorithmica.

[65]  Donald E. Knuth,et al.  The art of computer programming: sorting and searching (volume 3) , 1973 .

[66]  J. M. Luck,et al.  Statistics of the Occupation Time of Renewal Processes , 2000, cond-mat/0010428.

[67]  J. Stoyanov A Guide to First‐passage Processes , 2003 .

[68]  Statistics of the occupation time for a class of Gaussian Markov processes , 2000, cond-mat/0010453.

[69]  D. Chowdhury 100 years of Einstein’s theory of Brownian motion: from Pollen grains to protein trains—1 , 2005 .

[70]  J. Krug Origins of scale invariance in growth processes , 1997 .

[71]  D. Dufresne The Distribution of a Perpetuity, with Applications to Risk Theory and Pension Funding , 1990 .

[72]  Frank Harary,et al.  Graph Theory , 2016 .

[73]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .