A method of generating moving objects on the constrained network

Moving objects databases have become an important research issue in recent years. In case large real data sets acquired by GPS, PDA or other mobile devices are not available, benchmarking requires the generation of artificial data sets following the real-world behavior of spatial objects that change their locations over time. In the field of spatiotemporal databases, a number of publications about the generation of test data are restricted to few papers. However, most of the existing moving-object generators assume a fixed and often unrealistic mobility model and do not consider several important characteristics of the network. In this paper, a new generator is presented to solve these problems. First of all, the network is realistic transportation network of Guangzhou. Second, the observation records of vehicle flow are available. Third, in order to simplify the whole simulation process and to help us visualize the process, this framework is built under .Net development platform of Microsoft and ArcEngine9 environment.