3D Triangular Mesh Parametrization Using Locally Linear Embedding

In this paper we describe a new mesh parametrization method which combines the mean value coordinates and the Locally Linear Embedding (LLE) method. The mean value method is extended to compute the linearly reconstructing weights of both the interior and the boundary vertices of a 3D triangular mesh, and the weights are further used in the LLE algorithm to compute the vertex coordinates of a 2D planar triangular mesh parametrization. Examples are provided to show the effectiveness of this parametrization method.

[1]  Ron Kimmel,et al.  Texture Mapping Using Surface Flattening via Multidimensional Scaling , 2002, IEEE Trans. Vis. Comput. Graph..

[2]  Hugues Hoppe,et al.  Spherical parametrization and remeshing , 2003, ACM Trans. Graph..

[3]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[4]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[5]  Craig Gotsman,et al.  Intrinsic Morphing of Compatible Triangulations , 2003, Int. J. Shape Model..

[6]  W. T. Tutte How to Draw a Graph , 1963 .

[7]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[8]  L. Saul,et al.  An Introduction to Locally Linear Embedding , 2001 .

[9]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[10]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..