Spacecraft Angular Velocity Stabilization Using a Single-Gimbal Variable Speed Control Moment Gyro

Feedback controllers for the stabilization of the angular velocity vector of a rigid spacecraft using a single-gimbal Variable Speed Control Moment Gyro (VSCMG) are presented. Linearization of the equations of motion show that complete attitude stabilization is not possible via linear methods. Nonetheless, it is shown that the linearized angular velocity equations are controllable, and a simple LQR control law is used to locally asymptotically stabilize the angular velocity vector. A Lyapunov-based approach is subsequently used to derive a state feedback control law that globally asymptotically stabilizes the nonlinear angular velocity system.

[1]  Sahjendra N. Singh,et al.  Exact feedback linearization and control of space station using CMG , 1993, IEEE Trans. Autom. Control..

[2]  Panagiotis Tsiotras,et al.  Detumbling and Partial Attitude Stabilization of a Rigid Spacecraft Under Actuator Failure , 2000 .

[3]  Vinod J. Modi Spacecraft attitude dynamics: Evolution and current challenges☆ , 1990 .

[4]  Alessandro Astolfi,et al.  Energy-based stabilization of angular velocity of rigid body in failure configuration , 2002 .

[5]  A. Isidori,et al.  New results and examples in nonlinear feedback stabilization , 1989 .

[6]  D. Prato,et al.  The angular velocity of a rigid body , 1982 .

[7]  Dirk Aeyels,et al.  Stabilization by smooth feedback of the angular velocity of a rigid body , 1985 .

[8]  John L. Junkins,et al.  Feedback Control Law for Variable Speed Control Moment Gyros , 1998 .

[9]  Dirk Aeyes,et al.  Comments on the stabilization of the angular velocity of a rigid body , 1988 .

[10]  Youdan Kim,et al.  Spin-Axis Stabilization of a Rigid Spacecraft Using Two Reaction Wheels , 2001 .

[11]  Panagiotis Tsiotras,et al.  A 3-DoF Experimental Test-Bed for Integrated Attitude Dynamics and Control Research , 2003 .

[12]  Valeria Andriano Global feedback stabilization of the angular velocity of a symmetric rigid body , 1993 .

[13]  Hwa-Suk Oh FEEDBACK CONTROL AND STEERING LAWS FOR SPACECRAFT USING SINGLE GIMBAL CONTROL MOMENT GYROS , 1988 .

[14]  Panagiotis Tsiotras,et al.  Simultaneous attitude control and energy storage using VSCMGs: theory and simulation , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[15]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[16]  Rachid Outbib,et al.  Stabilizability of the angular velocity of a rigid body revisited , 1992 .

[17]  Bong Wie,et al.  Precision Spacecraft Pointing Using Single-Gimbal Control Moment Gyroscopes with Disturbance , 2000 .

[18]  Hyungjoo Yoon,et al.  Spacecraft Adaptive Attitude and Power Tracking with Variable Speed Control Moment Gyroscopes , 2002 .

[19]  N. Harris McClamroch,et al.  Attitude stabilization of a rigid spacecraft using two momentum wheel actuators , 1993 .

[20]  K. Ford,et al.  Singular Direction Avoidance Steering for Control-Moment Gyros , 1998 .

[21]  P. Hughes Spacecraft Attitude Dynamics , 1986 .

[22]  D. Aeyels Stabilization of a class of nonlinear systems by a smooth feedback control , 1985 .

[23]  Min-Jea Tahk,et al.  Nonlinear Momentum Transfer Control of Spacecraft by Feedback Linearization , 2002 .

[24]  P. Crouch,et al.  Spacecraft attitude control and stabilization: Applications of geometric control theory to rigid body models , 1984 .

[25]  Eduardo Sontag,et al.  Further comments on the stabilizability of the angular velocity of a rigid body , 1989 .