Triple crossing positivity bounds, mass dependence and cosmological scalars: Horndeski theory and DHOST

Scalars are widely used in cosmology to model novel phenomena such as the late-time cosmic acceleration. These are effective field theories with highly nonlinear interactions, including Horndeski theory/generalized galileon and beyond. We use the latest fully crossing symmetric positivity bounds to constrain these cosmological EFTs. These positivity bounds, based on fundamental principles of quantum field theory such as causality and unitarity, are able to constrain the EFT coefficients both from above and below. We first map the mass dependence of the fully crossing symmetric bounds, and find that a nonzero mass generically enlarges the positivity regions. We show that fine-tunings in the EFT construction can significantly reduce the viable regions and sometimes can be precarious. Then, we apply the positivity bounds to several models in the Horndeski class and beyond, explicitly listing the ready-to-use bounds with the model parameters, and discuss the implications for these models. The new positivity bounds are found to severely constrain some of these models, in which positivity requires the mass to be parametrically close to the cutoff of the EFT, effectively ruling them out. The examples include massive galileon, the original beyond Horndeski model, and DHOST theory with unity speed of gravity and nearly constant Newton's coupling. Also, massive galileon's positivity region appears to be in tension with observational constraints, while a $(\partial\phi)^4$ modified model is more accommodating phenomenologically.

[1]  L. Heisenberg,et al.  Positivity bounds in vector theories , 2022, Journal of High Energy Physics.

[2]  L. Senatore,et al.  Positivity bounds on effective field theories with spontaneously broken Lorentz invariance , 2022, Journal of High Energy Physics.

[3]  K. Mimasu,et al.  Moments for positivity: using Drell-Yan data to test positivity bounds and reverse-engineer new physics , 2022, Journal of High Energy Physics.

[4]  Shun Zhou,et al.  Origin of neutrino masses on the convex cone of positivity bounds , 2022, Physical Review D.

[5]  J. Noller,et al.  Positivity bounds from multiple vacua and their cosmological consequences , 2022, Journal of Cosmology and Astroparticle Physics.

[6]  Cen Zhang SMEFTs living on the edge: determining the UV theories from positivity and extremality , 2021, Journal of High Energy Physics.

[7]  Claudia de Rham,et al.  Reverse Bootstrapping: IR Lessons for UV Physics. , 2021, Physical review letters.

[8]  Cen Zhang,et al.  Triple crossing positivity bounds for multi-field theories , 2021, Journal of High Energy Physics.

[9]  Haoting Xu,et al.  Positivity in Multifield Effective Field Theories. , 2021, Physical review letters.

[10]  Wei Li,et al.  Into the EFThedron and UV constraints from IR consistency , 2021, Journal of High Energy Physics.

[11]  P. Ferreira,et al.  Theoretical priors in scalar-tensor cosmologies: Shift-symmetric Horndeski models , 2021, Physical Review D.

[12]  Claudia de Rham,et al.  Positivity bounds on dark energy: when matter matters , 2021, Journal of Cosmology and Astroparticle Physics.

[13]  N. Arkani-Hamed,et al.  The EFT-hedron , 2020, Journal of High Energy Physics.

[14]  C. Grojean,et al.  Positivity bounds on Minimal Flavor Violation , 2020, Journal of High Energy Physics.

[15]  Cen Zhang,et al.  Generalized elastic positivity bounds on interacting massive spin-2 theories , 2020, Journal of High Energy Physics.

[16]  Lian-tao Wang,et al.  Unambiguously Testing Positivity at Lepton Colliders. , 2020, Physical review letters.

[17]  S. Caron-Huot,et al.  Extremal effective field theories , 2020, Journal of High Energy Physics.

[18]  A. Tolley,et al.  New positivity bounds from full crossing symmetry , 2020, Journal of High Energy Physics.

[19]  R. Rattazzi,et al.  Positive moments for scattering amplitudes , 2020, Physical Review D.

[20]  Cen Zhang,et al.  Elastic positivity vs extremal positivity bounds in SMEFT: a case study in transversal electroweak gauge-boson scatterings , 2020, 2009.04490.

[21]  B. Fuks,et al.  Positivity in electron-positron scattering: testing the axiomatic quantum field theory principles and probing the existence of UV states , 2020, Chinese Physics C.

[22]  K. Aoki,et al.  Gravitational positivity bounds , 2020, Journal of High Energy Physics.

[23]  Cen Zhang,et al.  Convex Geometry Perspective on the (Standard Model) Effective Field Theory Space. , 2020, Physical review letters.

[24]  Grant N. Remmen,et al.  Flavor Constraints from Unitarity and Analyticity. , 2020, Physical review letters.

[25]  L. Atayde,et al.  Phenomenology of the generalized cubic covariant Galileon model and cosmological bounds , 2019, Physical Review D.

[26]  A. Tolley,et al.  Positivity constraints on interacting spin-2 fields , 2019, Journal of High Energy Physics.

[27]  Grant N. Remmen,et al.  Consistency of the standard model effective field theory , 2019, Journal of High Energy Physics.

[28]  Gen Ye,et al.  Positivity in the effective field theory of cosmological perturbations , 2019, The European Physical Journal C.

[29]  I. Timiryasov,et al.  To positivity and beyond, where Higgs-Dilaton inflation has never gone before , 2019, Journal of Cosmology and Astroparticle Physics.

[30]  J. Noller,et al.  Positivity in the Sky: Constraining dark energy and modified gravity from the UV , 2019, Physical Review D.

[31]  F. Vernizzi,et al.  Vainshtein regime in scalar-tensor gravity: Constraints on degenerate higher-order scalar-tensor theories , 2019, Physical Review D.

[32]  Cen Zhang,et al.  Positivity constraints on aQGC: carving out the physical parameter space , 2019, Journal of High Energy Physics.

[33]  M. Raveri Reconstructing gravity on cosmological scales , 2019, Physical Review D.

[34]  Tsutomu Kobayashi Horndeski theory and beyond: a review , 2019, Reports on progress in physics. Physical Society.

[35]  A. Nicola,et al.  Cosmological parameter constraints for Horndeski scalar-tensor gravity , 2018, Physical Review D.

[36]  C. Skordis,et al.  Dark Energy after GW170817 Revisited. , 2018, Physical review letters.

[37]  F. Vernizzi,et al.  Gravitational wave decay into dark energy , 2018, Journal of Cosmology and Astroparticle Physics.

[38]  Cen Zhang,et al.  Positivity bounds on vector boson scattering at the LHC , 2018, Physical Review D.

[39]  Claudia de Rham,et al.  Gravitational Rainbows: LIGO and Dark Energy at its Cutoff. , 2018, Physical review letters.

[40]  F. Riva,et al.  New phenomenological and theoretical perspective on anomalous ZZ and Zγ processes , 2018, Physical Review D.

[41]  J. García-Bellido,et al.  Black holes, gravitational waves and fundamental physics: a roadmap , 2018, Classical and Quantum Gravity.

[42]  A. Tolley,et al.  Positivity bounds for massive spin-1 and spin-2 fields , 2018, Journal of High Energy Physics.

[43]  K. Koyama,et al.  Large-scale structure phenomenology of viable Horndeski theories , 2017, 1712.00444.

[44]  Daisuke Yamauchi,et al.  Scalar-tensor theories and modified gravity in the wake of GW170817 , 2017, 1711.07403.

[45]  K. Koyama,et al.  Vainshtein mechanism after GW170817 , 2017, 1711.06661.

[46]  B. Jain,et al.  Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories. , 2017, Physical review letters.

[47]  J. Ezquiaga,et al.  Dark Energy After GW170817: Dead Ends and the Road Ahead. , 2017, Physical review letters.

[48]  F. Vernizzi,et al.  Dark Energy after GW170817 and GRB170817A. , 2017, Physical review letters.

[49]  A. Tolley,et al.  UV complete me: positivity bounds for particles with spin , 2017, 1706.02712.

[50]  F. Vernizzi,et al.  Effective description of higher-order scalar-tensor theories , 2017, 1703.03797.

[51]  A. Tolley,et al.  Positivity bounds for scalar field theories , 2017, 1702.06134.

[52]  Antonio Argandoña Inflation , 2016 .

[53]  P. Ferreira,et al.  Observational future of cosmological scalar-tensor theories , 2016, 1610.09290.

[54]  K. Koyama,et al.  Degenerate higher order scalar-tensor theories beyond Horndeski up to cubic order , 2016, 1608.08135.

[55]  Kurt Hinterbichler,et al.  Positivity constraints for pseudolinear massive spin-2 and vector Galileons , 2016, 1607.06084.

[56]  A. Silvestri,et al.  What can cosmology tell us about gravity? Constraining Horndeski gravity with Σ and μ , 2016, 1606.05339.

[57]  A. Matas,et al.  Ostrogradsky in theories with multiple fields , 2016, 1604.08638.

[58]  C. Charmousis,et al.  Black holes and stars in Horndeski theory , 2016, 1604.06402.

[59]  D Huet,et al.  Tests of General Relativity with GW150914. , 2016, Physical review letters.

[60]  K. Koyama,et al.  Extended scalar-tensor theories of gravity , 2016, 1602.03119.

[61]  Grant N. Remmen,et al.  Positive signs in massive gravity , 2016, 1601.04068.

[62]  D. Langlois,et al.  Hamiltonian analysis of higher derivative scalar-tensor theories , 2015, 1512.06820.

[63]  D. Langlois,et al.  Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability , 2015, 1510.06930.

[64]  E. Barausse,et al.  Gravitation-Wave Emission in Shift-Symmetric Horndeski Theories. , 2015, Physical review letters.

[65]  F. Piazza,et al.  Evading the Vainshtein Mechanism with Anomalous Gravitational Wave Speed: Constraints on Modified Gravity from Binary Pulsars. , 2015, Physical review letters.

[66]  D. Simmons-Duffin,et al.  A semidefinite program solver for the conformal bootstrap , 2015, Journal of High Energy Physics.

[67]  Marco O. P. Sampaio,et al.  Testing general relativity with present and future astrophysical observations , 2015, 1501.07274.

[68]  F. Vernizzi,et al.  Exploring gravitational theories beyond Horndeski , 2014, 1408.1952.

[69]  T. Sotiriou,et al.  Black hole hair in generalized scalar-tensor gravity: An explicit example , 2014, 1408.1698.

[70]  A. Gomez Speed of Gravity , 2014 .

[71]  Mark Trodden,et al.  Beyond the Cosmological Standard Model , 2014, 1407.0059.

[72]  F. Vernizzi,et al.  New class of consistent scalar-tensor theories. , 2014, Physical review letters.

[73]  T. Sotiriou,et al.  Black hole hair in generalized scalar-tensor gravity. , 2013, Physical review letters.

[74]  U. Heidelberg,et al.  Transforming gravity: from derivative couplings to matter to second-order scalar-tensor theories beyond the Horndeski Lagrangian , 2013, 1308.4685.

[75]  K. Koyama,et al.  Effective theory for the Vainshtein mechanism from the Horndeski action , 2013, 1305.0279.

[76]  Antonio Padilla,et al.  Modified Gravity and Cosmology , 2011, 1106.2476.

[77]  J. Yokoyama,et al.  Generalized G-Inflation —Inflation with the Most General Second-Order Field Equations— , 2011, 1105.5723.

[78]  Claudia de Rham,et al.  Resummation of massive gravity. , 2010, Physical review letters.

[79]  V. Mukhanov INFLATION: THEORY AND OBSERVATIONS , 2010 .

[80]  J. Yokoyama,et al.  Inflation driven by the Galileon field. , 2010, Physical review letters.

[81]  I. Sawicki,et al.  Imperfect Dark Energy from Kinetic Gravity Braiding , 2010, 1008.0048.

[82]  C. D. Rham,et al.  Massive gravity from Dirichlet boundary conditions , 2009, 0910.5474.

[83]  S. Deser,et al.  Generalized Galileons: All scalar models whose curved background extensions maintain second-order field equations and stress tensors , 2009, 0906.1967.

[84]  C. Deffayet,et al.  Covariant Galileon , 2009, 0901.1314.

[85]  R. Rattazzi,et al.  Galileon as a local modification of gravity , 2008, 0811.2197.

[86]  R. Rattazzi,et al.  Causality, analyticity and an IR obstruction to UV completion , 2006, hep-th/0602178.

[87]  R. Rattazzi,et al.  Classical and Quantum Consistency of the DGP Model , 2004, hep-th/0404159.

[88]  E. Silverstein,et al.  DBI in the sky , 2004, hep-th/0404084.

[89]  Hsin-Chia Cheng,et al.  Ghost condensation and a consistent infrared modification of gravity , 2003, hep-th/0312099.

[90]  R. Rattazzi,et al.  Strong Interactions and Stability in the DGP Model , 2003, hep-th/0303116.

[91]  Paul J. Steinhardt,et al.  Essentials of k essence , 2000, astro-ph/0006373.

[92]  P. Steinhardt,et al.  Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration , 2000, Physical review letters.

[93]  H. Georgi,et al.  Chiral quarks and the non-relativistic quark model , 1984 .

[94]  G. W. Horndeski Second-order scalar-tensor field equations in a four-dimensional space , 1974 .

[95]  Illtyd Trethowan Causality , 1938 .

[96]  K. Tamvakis Symmetries , 2019, Undergraduate Texts in Physics.

[97]  P. Astier,et al.  Constraining the ΛCDM and Galileon models with recent cosmological data , 2017 .

[98]  The VIRGO Collaboration , 2010 .

[99]  M. Porrati,et al.  D Gravity on a Brane in 5 D Minkowski Space , 2000 .