Fundamental Concepts of the Theory of Chaos and Fractals

[1]  Pierre Collet,et al.  Universal properties of maps on an interval , 1980 .

[2]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[3]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[4]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[5]  John M. Greene,et al.  A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.

[6]  K. Falconer The geometry of fractal sets: Contents , 1985 .

[7]  Giorgio Turchetti,et al.  Normal forms for Hamiltonian maps and nonlinear effects in a particle accelerator , 1988 .

[8]  T. Bountis Period doubling bifurcations and universality in conservative systems , 1981 .

[9]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[10]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[11]  H. G. E. Hentschel,et al.  The infinite number of generalized dimensions of fractals and strange attractors , 1983 .

[12]  Jacques Laskar,et al.  The measure of chaos by the numerical analysis of the fundamental frequencies. Application to the standard mapping , 1992 .

[13]  F. Takens,et al.  On the nature of turbulence , 1971 .

[14]  Mitchell J. Feigenbaum,et al.  The transition to aperiodic behavior in turbulent systems , 1980 .

[15]  Tassos Bountis,et al.  Fundamental concepts of classical chaos I , 1995 .

[16]  Tassos Bountis,et al.  Determinism and noise in surface temperature time series , 1993 .

[17]  Hartmut Jürgens,et al.  Chaos and Fractals: New Frontiers of Science , 1992 .

[18]  Giulio Casati,et al.  Quantum chaos : between order and disorder , 1995 .

[19]  T. Bountis,et al.  Nonlinear time series analysis of electrocardiograms. , 1995, Chaos.

[20]  M. Feigenbaum The universal metric properties of nonlinear transformations , 1979 .

[21]  Bambi Hu,et al.  Exact Solutions to the Feigenbaum Renormalization-Group Equations for Intermittency , 1982 .

[22]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[23]  M. Feigenbaum,et al.  Universal Behaviour in Families of Area-Preserving Maps , 1981, Hamiltonian Dynamical Systems.

[24]  Y. Pomeau,et al.  Intermittent transition to turbulence in dissipative dynamical systems , 1980 .

[25]  T. Bountis Fundamental Concepts of Classical Chaos. Part II: Fractals and Chaotic Dynamics , 1997 .

[26]  S. Shenker,et al.  Quasiperiodicity in dissipative systems: A renormalization group analysis , 1983 .

[27]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .