Fundamental Concepts of the Theory of Chaos and Fractals
暂无分享,去创建一个
[1] Pierre Collet,et al. Universal properties of maps on an interval , 1980 .
[2] B. Chirikov. A universal instability of many-dimensional oscillator systems , 1979 .
[3] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[4] M. Hénon,et al. A two-dimensional mapping with a strange attractor , 1976 .
[5] John M. Greene,et al. A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.
[6] K. Falconer. The geometry of fractal sets: Contents , 1985 .
[7] Giorgio Turchetti,et al. Normal forms for Hamiltonian maps and nonlinear effects in a particle accelerator , 1988 .
[8] T. Bountis. Period doubling bifurcations and universality in conservative systems , 1981 .
[9] P. Grassberger,et al. Characterization of Strange Attractors , 1983 .
[10] M. Feigenbaum. Quantitative universality for a class of nonlinear transformations , 1978 .
[11] H. G. E. Hentschel,et al. The infinite number of generalized dimensions of fractals and strange attractors , 1983 .
[12] Jacques Laskar,et al. The measure of chaos by the numerical analysis of the fundamental frequencies. Application to the standard mapping , 1992 .
[13] F. Takens,et al. On the nature of turbulence , 1971 .
[14] Mitchell J. Feigenbaum,et al. The transition to aperiodic behavior in turbulent systems , 1980 .
[15] Tassos Bountis,et al. Fundamental concepts of classical chaos I , 1995 .
[16] Tassos Bountis,et al. Determinism and noise in surface temperature time series , 1993 .
[17] Hartmut Jürgens,et al. Chaos and Fractals: New Frontiers of Science , 1992 .
[18] Giulio Casati,et al. Quantum chaos : between order and disorder , 1995 .
[19] T. Bountis,et al. Nonlinear time series analysis of electrocardiograms. , 1995, Chaos.
[20] M. Feigenbaum. The universal metric properties of nonlinear transformations , 1979 .
[21] Bambi Hu,et al. Exact Solutions to the Feigenbaum Renormalization-Group Equations for Intermittency , 1982 .
[22] Fraser,et al. Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.
[23] M. Feigenbaum,et al. Universal Behaviour in Families of Area-Preserving Maps , 1981, Hamiltonian Dynamical Systems.
[24] Y. Pomeau,et al. Intermittent transition to turbulence in dissipative dynamical systems , 1980 .
[25] T. Bountis. Fundamental Concepts of Classical Chaos. Part II: Fractals and Chaotic Dynamics , 1997 .
[26] S. Shenker,et al. Quasiperiodicity in dissipative systems: A renormalization group analysis , 1983 .
[27] D. Ruelle,et al. Ergodic theory of chaos and strange attractors , 1985 .