Semiparametric non‐linear time series model selection
暂无分享,去创建一个
[1] Howell Tong,et al. Fitting a smooth moving average to noisy data (Corresp.) , 1976, IEEE Trans. Inf. Theory.
[2] M. Stone. An Asymptotic Equivalence of Choice of Model by Cross‐Validation and Akaike's Criterion , 1977 .
[3] BERNARD C. PICINBONO. A geometrical interpretation of signal detection and estimation (Corresp.) , 1980, IEEE Trans. Inf. Theory.
[4] Timo Teräsvirta,et al. Aspects of modelling nonlinear time series , 1986 .
[5] P. Djurić,et al. Model selection by cross-validation , 1990, IEEE International Symposium on Circuits and Systems.
[6] Ping Zhang. Variable Selection in Nonparametric Regression with Continuous Covariates , 1991 .
[7] Peter J. Bickel,et al. Variable selection in nonparametric regression with categorical covariates , 1992 .
[8] H. Tong,et al. On consistent nonparametric order determination and chaos , 1992 .
[9] Ping Zhang. Model Selection Via Multifold Cross Validation , 1993 .
[10] Ruey S. Tsay,et al. Nonlinear Additive ARX Models , 1993 .
[11] Howell Tong,et al. Nonparametric function estimation in noisy chaos , 1993 .
[12] J. Shao. Linear Model Selection by Cross-validation , 1993 .
[13] Qiwei Yao,et al. On subset selection in non-parametric stochastic regression , 1994 .
[14] D. Tjøstheim. Non-linear Time Series: A Selective Review* , 1994 .
[15] Dag Tjøstheim,et al. Nonparametric Identification of Nonlinear Time Series: Selecting Significant Lags , 1994 .
[16] Jianqing Fan,et al. Local polynomial modelling and its applications , 1994 .
[17] Philippe Vieu,et al. Choice of regressors in nonparametric estimation , 1994 .
[18] Dag Tjøstheim,et al. Nonparametric Identification of Nonlinear Time Series: Projections , 1994 .
[19] P. Vieu. Order Choice in Nonlinear Autoregressive Models , 1995 .
[20] Hua Liang,et al. Asymptotic normality of pseudo-LS estimator for partly linear autoregression models , 1995 .
[21] Jun S. Liu,et al. Additivity tests for nonlinear autoregression , 1995 .
[22] D. Tjøstheim,et al. Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality , 1995, Econometric Theory.
[23] Elias Masry,et al. Multivariate regression estimation: local polynomial fitting for time series , 1997 .
[24] W. Härdle,et al. A Review of Nonparametric Time Series Analysis , 1997 .
[25] Dag Tjøstheim,et al. Additive Nonlinear ARX Time Series and Projection Estimates , 1997, Econometric Theory.
[26] J. Shao. AN ASYMPTOTIC THEORY FOR LINEAR MODEL SELECTION , 1997 .
[27] Yuhong Yang. MODEL SELECTION FOR NONPARAMETRIC REGRESSION , 1997 .
[28] D. Tjøstheim,et al. Nonparametric Specification Procedures for Time Series , 1997 .
[29] Jiti Gao,et al. Semiparametric Regression Smoothing of Non‐linear Time Series , 1998 .
[30] Chih-Ling Tsai,et al. Semiparametric regression model selections , 1999 .
[31] Wolfgang Härdle,et al. Partially Linear Models , 2000 .
[32] Adaptive estimation in partially linear autoregressive models , 2000 .
[33] Lijian Yang,et al. Nonparametric Lag Selection for Time Series , 2000 .
[34] Carlo Novara,et al. Nonlinear Time Series , 2003 .
[35] H. Tong,et al. Article: 2 , 2002, European Financial Services Law.
[36] Philippe Vieu. Data-Driven Model Choice in Multivariate Nonparametric Regression , 2002 .
[37] Jiti Gao,et al. Nonparametric and semiparametric regression model selection , 2002 .
[38] H. Tong,et al. An adaptive estimation of dimension reduction space, with discussion , 2002 .
[39] Jiti Gao,et al. Model Specification Tests in Nonparametric Stochastic Regression Models , 2002 .
[40] Jianqing Fan. Nonlinear Time Series , 2003 .