Semiparametric non‐linear time series model selection

Summary.  Semiparametric time series regression is often used without checking its suitability, resulting in an unnecessarily complicated model. In practice, one may encounter computational difficulties caused by the curse of dimensionality. The paper suggests that to provide more precise predictions we need to choose the most significant regressors for both the parametric and the nonparametric time series components. We develop a novel cross‐validation‐based model selection procedure for the simultaneous choice of both the parametric and the nonparametric time series components, and we establish some asymptotic properties of the model selection procedure proposed. In addition, we demonstrate how to implement it by using both simulated and real examples. Our empirical studies show that the procedure works well.

[1]  Howell Tong,et al.  Fitting a smooth moving average to noisy data (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[2]  M. Stone An Asymptotic Equivalence of Choice of Model by Cross‐Validation and Akaike's Criterion , 1977 .

[3]  BERNARD C. PICINBONO A geometrical interpretation of signal detection and estimation (Corresp.) , 1980, IEEE Trans. Inf. Theory.

[4]  Timo Teräsvirta,et al.  Aspects of modelling nonlinear time series , 1986 .

[5]  P. Djurić,et al.  Model selection by cross-validation , 1990, IEEE International Symposium on Circuits and Systems.

[6]  Ping Zhang Variable Selection in Nonparametric Regression with Continuous Covariates , 1991 .

[7]  Peter J. Bickel,et al.  Variable selection in nonparametric regression with categorical covariates , 1992 .

[8]  H. Tong,et al.  On consistent nonparametric order determination and chaos , 1992 .

[9]  Ping Zhang Model Selection Via Multifold Cross Validation , 1993 .

[10]  Ruey S. Tsay,et al.  Nonlinear Additive ARX Models , 1993 .

[11]  Howell Tong,et al.  Nonparametric function estimation in noisy chaos , 1993 .

[12]  J. Shao Linear Model Selection by Cross-validation , 1993 .

[13]  Qiwei Yao,et al.  On subset selection in non-parametric stochastic regression , 1994 .

[14]  D. Tjøstheim Non-linear Time Series: A Selective Review* , 1994 .

[15]  Dag Tjøstheim,et al.  Nonparametric Identification of Nonlinear Time Series: Selecting Significant Lags , 1994 .

[16]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[17]  Philippe Vieu,et al.  Choice of regressors in nonparametric estimation , 1994 .

[18]  Dag Tjøstheim,et al.  Nonparametric Identification of Nonlinear Time Series: Projections , 1994 .

[19]  P. Vieu Order Choice in Nonlinear Autoregressive Models , 1995 .

[20]  Hua Liang,et al.  Asymptotic normality of pseudo-LS estimator for partly linear autoregression models , 1995 .

[21]  Jun S. Liu,et al.  Additivity tests for nonlinear autoregression , 1995 .

[22]  D. Tjøstheim,et al.  Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality , 1995, Econometric Theory.

[23]  Elias Masry,et al.  Multivariate regression estimation: local polynomial fitting for time series , 1997 .

[24]  W. Härdle,et al.  A Review of Nonparametric Time Series Analysis , 1997 .

[25]  Dag Tjøstheim,et al.  Additive Nonlinear ARX Time Series and Projection Estimates , 1997, Econometric Theory.

[26]  J. Shao AN ASYMPTOTIC THEORY FOR LINEAR MODEL SELECTION , 1997 .

[27]  Yuhong Yang MODEL SELECTION FOR NONPARAMETRIC REGRESSION , 1997 .

[28]  D. Tjøstheim,et al.  Nonparametric Specification Procedures for Time Series , 1997 .

[29]  Jiti Gao,et al.  Semiparametric Regression Smoothing of Non‐linear Time Series , 1998 .

[30]  Chih-Ling Tsai,et al.  Semiparametric regression model selections , 1999 .

[31]  Wolfgang Härdle,et al.  Partially Linear Models , 2000 .

[32]  Adaptive estimation in partially linear autoregressive models , 2000 .

[33]  Lijian Yang,et al.  Nonparametric Lag Selection for Time Series , 2000 .

[34]  Carlo Novara,et al.  Nonlinear Time Series , 2003 .

[35]  H. Tong,et al.  Article: 2 , 2002, European Financial Services Law.

[36]  Philippe Vieu Data-Driven Model Choice in Multivariate Nonparametric Regression , 2002 .

[37]  Jiti Gao,et al.  Nonparametric and semiparametric regression model selection , 2002 .

[38]  H. Tong,et al.  An adaptive estimation of dimension reduction space, with discussion , 2002 .

[39]  Jiti Gao,et al.  Model Specification Tests in Nonparametric Stochastic Regression Models , 2002 .

[40]  Jianqing Fan Nonlinear Time Series , 2003 .