INFLUENCE LEARNING FOR MULTI-AGENT SYSTEM BASED ON REINFORCEMENT LEARNING

This paper describes a multi-agent influence learning approach and reinforcement learning adaptation to it. This learning technique is used for distributed, adaptive and self-organizing control in multi-agent system. This technique is quite simple and uses agent’s influences to estimate learning error between them. The best influences are rewarded via reinforcement learning which is a well-proven learning technique. It is shown that this learning rule supports positive-reward interactions between agents and does not require any additional information than standard reinforcement learning algorithm. This technique produces optimal behavior of multi-agent system with fast convergence patterns.