Single-electron tunneling PbS/InP neuromorphic computing building blocks

We study single-electron tunneling (SET) characteristics in crystalline PbS/InP junctions, that exhibit single-electron Coulomb-blockade staircases along with memory and memory-fading behaviors. This gives rise to both short-term and long-term plasticities as well as a convenient non-linear response, making this structure attractive for neuromorphic computing applications. For further insights into this prospect, we predict typical behaviors relevant to the field, obtained by an extrapolation of experimental data in the SET framework. The estimated minimum energy required for a synaptic operation is in the order of 1 fJ, while the maximum frequency of operation can reach the MHz range.

[1]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[2]  K. Steinhubl Design of Ion-Implanted MOSFET'S with Very Small Physical Dimensions , 1974 .

[3]  Alexandre Ricardo Soares Romariz,et al.  Bio-Inspired Oscillators with Single-Electron Transistors: Circuit Simulation and Input Encoding Example , 2013 .

[4]  B. Gerardot,et al.  Coulomb blockade in an atomically thin quantum dot coupled to a tunable Fermi reservoir , 2018, Nature Nanotechnology.

[5]  C. Delerue,et al.  Probing the Carrier Capture Rate of a Single Quantum Level , 2008, Science.

[6]  T. Xu,et al.  Trap-Free Heterostructure of PbS Nanoplatelets on InP(001) by Chemical Epitaxy. , 2019, ACS nano.

[7]  Rodrigo Alvarez-Icaza,et al.  Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations , 2014, Proceedings of the IEEE.

[8]  V. Bulović,et al.  Measuring charge trap occupation and energy level in CdSe/ZnS quantum dots using a scanning tunneling microscope , 2010 .

[9]  Wilkins,et al.  Scanning-tunneling-microscope observations of Coulomb blockade and oxide polarization in small metal droplets. , 1989, Physical review letters.

[10]  K. Likharev Correlated discrete transfer of single electrons in ultrasmall tunnel junctions , 1988 .

[11]  From wave-functions to current-voltage characteristics: overview of a Coulomb blockade device simulator using fundamental physical parameters , 2005, cond-mat/0511652.

[12]  Mullen,et al.  I-V characteristics of coupled ultrasmall-capacitance normal tunnel junctions. , 1988, Physical review. B, Condensed matter.

[13]  Konstantin K. Likharev,et al.  Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions , 1986 .

[14]  Y. Chabal,et al.  Gold Nanoparticles on Functionalized Silicon Substrate under Coulomb Blockade Regime: An Experimental and Theoretical Investigation. , 2017, The journal of physical chemistry. B.

[15]  D. Attwell,et al.  Synaptic Energy Use and Supply , 2012, Neuron.

[16]  Jin Ho Kim,et al.  Room temperature photocurrent response of PbS/InP heterojunction , 2009 .

[17]  S. Cai,et al.  Single-electron tunneling in a single PbS nanocrystal nucleated on 11-mercaptoundecanoic acid self-assembled monolayer at room temperature , 2001 .

[18]  Tetsuya Asai,et al.  Neuronal synchrony detection on single-electron neural networks , 2006 .

[19]  Z. Zhong,et al.  Coulomb blockade in monolayer MoS2 single electron transistor. , 2016, Nanoscale.

[20]  Edwin R. Williams,et al.  Application of Single Electron Tunneling: Precision Capacitance Ratio Measurements , 1995 .

[21]  Beatriz dos Santos Pês,et al.  A Spiking Neural Network implemented with Single-Electron Transistors and NoCs , 2018, Nano Commun. Networks.

[22]  Steve B. Furber,et al.  The SpiNNaker Project , 2014, Proceedings of the IEEE.

[23]  M. Kastner,et al.  The single-electron transistor , 1992 .

[24]  Johannes Schemmel,et al.  A wafer-scale neuromorphic hardware system for large-scale neural modeling , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[25]  Farnood Merrikh-Bayat,et al.  Training and operation of an integrated neuromorphic network based on metal-oxide memristors , 2014, Nature.

[26]  K. Bertness,et al.  Fermi level pinning during oxidation of atomically clean n‐InP(110) , 1986 .

[27]  B. Wessels,et al.  Deep level transient spectroscopy of interface and bulk trap states in InP metal/oxide/semiconductor structures , 1983 .

[28]  C. Mead Anomalous capacitance of thin dielectric structures , 1961 .

[29]  Klaus H. Ploog,et al.  Single charge tunneling, coulomb blockade phenomena in nanostructures. Edited by H. Grabert and M. H. Devoret, NATO Adv. Sci. Inst. Ser. B, Vol. 294, Plenum Press, New York 1992, 335 pp., hardback, $ 89.50, ISBN 0‐306‐44229‐9 , 1993 .

[30]  Fabien Alibart,et al.  Pattern classification by memristive crossbar circuits using ex situ and in situ training , 2013, Nature Communications.

[31]  C.J.M. Verhoeven,et al.  Single electron tunneling technology for neural networks , 1996, Proceedings of Fifth International Conference on Microelectronics for Neural Networks.

[32]  P. Zhou,et al.  Self‐Assembled Networked PbS Distribution Quantum Dots for Resistive Switching and Artificial Synapse Performance Boost of Memristors , 2018, Advanced materials.

[33]  Nicola A. Spaldin,et al.  Origin of the dielectric dead layer in nanoscale capacitors , 2006, Nature.