Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health.

Transposable elements (TEs) have shared an exceptionally long coexistence with their host organisms and have come to occupy a significant fraction of eukaryotic genomes. The bulk of the expansion occurring within mammalian genomes has arisen from the activity of type I retrotransposons, which amplify in a "copy-and-paste" fashion through an RNA intermediate. For better or worse, the sequences of these retrotransposons are now wedded to the genomes of their mammalian hosts. Although there are several reported instances of the positive contribution of mobile elements to their host genomes, these discoveries have occurred alongside growing evidence of the role of TEs in human disease and genetic instability. Here we examine, with a particular emphasis on human retrotransposon activity, several newly discovered aspects of mammalian retrotransposon biology. We consider their potential impact on host biology as well as their ultimate implications for the nature of the TE-host relationship.

[1]  S. Boissinot,et al.  The Genomic Distribution of L1 Elements: The Role of Insertion Bias and Natural Selection , 2006, Journal of biomedicine & biotechnology.

[2]  P. Deininger,et al.  The impact of multiple splice sites in human L1 elements. , 2008, Gene.

[3]  B. Davidson,et al.  RNA polymerase III transcribes human microRNAs , 2006, Nature Structural &Molecular Biology.

[4]  M. Lynch,et al.  The Origins of Genome Complexity , 2003, Science.

[5]  G. Kao,et al.  Gamma radiation increases endonuclease-dependent L1 retrotransposition in a cultured cell assay , 2006, Nucleic acids research.

[6]  Jennifer L. Robichaux,et al.  Predicting mammalian SINE subfamily activity from A-tail length. , 2004, Molecular biology and evolution.

[7]  P. Deininger,et al.  Requirements for polyadenylation at the 3' end of LINE-1 elements. , 2007, Gene.

[8]  R. Plasterk,et al.  Rte‐1, a retrotransposon‐like element in Caenorhabditis elegans , 1996, FEBS letters.

[9]  J. Landry,et al.  Repetitive elements in the 5' untranslated region of a human zinc-finger gene modulate transcription and translation efficiency. , 2001, Genomics.

[10]  A. Laquérriere,et al.  Detection of an Alu insertion in the POMT1 gene from three French Walker Warburg syndrome families. , 2007, Molecular genetics and metabolism.

[11]  A. Ryan,et al.  Induction of Apoptosis in Renal Cell Carcinoma by Reactive Oxygen Species: Involvement of Extracellular Signal-Regulated Kinase 1/2, p38δ/γ, Cyclooxygenase-2 Down-Regulation, and Translocation of Apoptosis-Inducing Factor , 2006, Molecular Pharmacology.

[12]  H. Ozawa,et al.  The first reported case of Menkes disease caused by an Alu insertion mutation , 2007, Brain and Development.

[13]  T. Wicker,et al.  Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. , 2001, The Plant journal : for cell and molecular biology.

[14]  G. Swergold Identification, characterization, and cell specificity of a human LINE-1 promoter , 1990, Molecular and cellular biology.

[15]  N. C. Casavant,et al.  The end of the LINE?: lack of recent L1 activity in a group of South American rodents. , 2000, Genetics.

[16]  A. Bibiłło,et al.  DNA-directed DNA polymerase and strand displacement activity of the reverse transcriptase encoded by the R2 retrotransposon. , 2007, Journal of molecular biology.

[17]  A. Seluanov,et al.  Making ends meet in old age: DSB repair and aging , 2005, Mechanisms of Ageing and Development.

[18]  M. Speek,et al.  L1 Antisense Promoter Drives Tissue-Specific Transcription of Human Genes , 2006, Journal of biomedicine & biotechnology.

[19]  D. Ray,et al.  Bats with hATs: evidence for recent DNA transposon activity in genus Myotis. , 2006, Molecular biology and evolution.

[20]  P. Stenson,et al.  Human Gene Mutation Database—A biomedical information and research resource , 2000, Human mutation.

[21]  D. Keller,et al.  Trimeric structure for an essential protein in L1 retrotransposition , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  W. Greene,et al.  High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition , 2006, Proceedings of the National Academy of Sciences.

[23]  Jerilyn A. Walker,et al.  SVA elements: a hominid-specific retroposon family. , 2005, Journal of molecular biology.

[24]  Jean L. Chang,et al.  Initial sequence and comparative analysis of the cat genome. , 2007, Genome research.

[25]  Liane Gagnier,et al.  Retroviral Elements and Their Hosts: Insertional Mutagenesis in the Mouse Germ Line , 2006, PLoS genetics.

[26]  C. Schmid,et al.  Transcriptional inactivity of Alu repeats in HeLa cells. , 1986, Nucleic acids research.

[27]  M. Speek,et al.  Many human genes are transcribed from the antisense promoter of L1 retrotransposon. , 2002, Genomics.

[28]  P. Deininger,et al.  Nickel stimulates L1 retrotransposition by a post-transcriptional mechanism. , 2005, Journal of molecular biology.

[29]  Jef D. Boeke,et al.  Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes , 2004, Nature.

[30]  S. Martin,et al.  Tightly regulated, developmentally specific expression of the first open reading frame from LINE-1 during mouse embryogenesis. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Alexander E Vinogradov,et al.  Selfish DNA is maladaptive: evidence from the plant Red List. , 2003, Trends in genetics : TIG.

[32]  M. Batzer,et al.  Genomic rearrangements by LINE-1 insertion-mediated deletion in the human and chimpanzee lineages , 2005, Nucleic acids research.

[33]  R. Cardiff,et al.  Expression of LINE‐1 retrotransposons in human breast cancer , 1994, Cancer.

[34]  P. Deininger,et al.  Upstream flanking sequences and transcription of SINEs. , 2000, Journal of molecular biology.

[35]  S. Boissinot,et al.  L1 (LINE-1) retrotransposon diversity differs dramatically between mammals and fish. , 2004, Trends in genetics : TIG.

[36]  C. Schmid,et al.  Cell stress and translational inhibitors transiently increase the abundance of mammalian SINE transcripts. , 1995, Nucleic acids research.

[37]  J. Jurka,et al.  Potential for Retroposition by Old Alu Subfamilies , 2003, Journal of Molecular Evolution.

[38]  S. Boissinot,et al.  Fitness cost of LINE-1 (L1) activity in humans. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[39]  P. Jeggo,et al.  Healing the wounds inflicted by sleeping beauty transposition by double-strand break repair in mammalian somatic cells. , 2004, Molecular cell.

[40]  T. Shaikh,et al.  cDNAs derived from primary and small cytoplasmic Alu (scAlu) transcripts. , 1997, Journal of molecular biology.

[41]  Lisa Deininger,et al.  Active Alu element "A-tails": size does matter. , 2002, Genome research.

[42]  E. Ostertag,et al.  A potential role for the nucleolus in L1 retrotransposition. , 2004, Human molecular genetics.

[43]  J. V. Moran,et al.  Unconventional translation of mammalian LINE-1 retrotransposons. , 2006, Genes & development.

[44]  D. Keller,et al.  Spatial assembly and RNA binding stoichiometry of a LINE-1 protein essential for retrotransposition. , 2006, Journal of molecular biology.

[45]  A. Troxel,et al.  Genomic characterization of recent human LINE-1 insertions: evidence supporting random insertion. , 2001, Genome research.

[46]  M. Stenglein,et al.  APOBEC3B and APOBEC3F Inhibit L1 Retrotransposition by a DNA Deamination-independent Mechanism* , 2006, Journal of Biological Chemistry.

[47]  M. Speek Antisense Promoter of Human L1 Retrotransposon Drives Transcription of Adjacent Cellular Genes , 2001, Molecular and Cellular Biology.

[48]  Colin N. Dewey,et al.  Initial sequencing and comparative analysis of the mouse genome. , 2002 .

[49]  Stéphane Boissinot,et al.  Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. , 2005, Genome research.

[50]  Thierry Heidmann,et al.  LINE-mediated retrotransposition of marked Alu sequences , 2003, Nature Genetics.

[51]  M. Jasin,et al.  Sister chromatid gene conversion is a prominent double‐strand break repair pathway in mammalian cells , 2000, The EMBO journal.

[52]  J. V. Moran,et al.  Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles , 2006, Nature Structural &Molecular Biology.

[53]  H. Kazazian,et al.  Mobile elements and disease. , 1998, Current opinion in genetics & development.

[54]  M. Pardue,et al.  Two retrotransposons maintain telomeres in Drosophila , 2005, Chromosome Research.

[55]  K. Kaku,et al.  A novel complex deletion-insertion mutation mediated by Alu repetitive elements leads to lipoprotein lipase deficiency. , 2007, Molecular genetics and metabolism.

[56]  E. Rogakou,et al.  DNA Double-stranded Breaks Induce Histone H2AX Phosphorylation on Serine 139* , 1998, The Journal of Biological Chemistry.

[57]  E. Ostertag,et al.  Biology of mammalian L1 retrotransposons. , 2001, Annual review of genetics.

[58]  N. Yang,et al.  An important role for RUNX3 in human L1 transcription and retrotransposition. , 2003, Nucleic acids research.

[59]  Cédric Feschotte,et al.  Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus , 2007, Proceedings of the National Academy of Sciences.

[60]  P. Deininger,et al.  RNA truncation by premature polyadenylation attenuates human mobile element activity , 2003, Nature Genetics.

[61]  J. V. Moran,et al.  Exon shuffling by L1 retrotransposition. , 1999, Science.

[62]  H. Kazazian Mobile Elements: Drivers of Genome Evolution , 2004, Science.

[63]  H. Soifer,et al.  A potential role for RNA interference in controlling the activity of the human LINE-1 retrotransposon , 2005, Nucleic acids research.

[64]  J. Weber,et al.  Alu repeats: a source for the genesis of primate microsatellites. , 1995, Genomics.

[65]  R. Vervoort,et al.  A mutation (IVS8+0.6kbdelTC) creating a new donor splice site activates a cryptic exon in an Alu-element in intron 8 of the human β-glucuronidase gene , 1998, Human Genetics.

[66]  R. Deberardinis,et al.  A mouse model of human L1 retrotransposition , 2002, Nature Genetics.

[67]  M. Lynch Intron evolution as a population-genetic process , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[68]  M F Singer,et al.  Expression of a cytoplasmic LINE-1 transcript is regulated in a human teratocarcinoma cell line. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[69]  M. Batzer,et al.  Evolution of Retroposons , 1993 .

[70]  L. Manco,et al.  Molecular characterization of five Portuguese patients with pyrimidine 5'-nucleotidase deficient hemolytic anemia showing three new P5'N-I mutations. , 2006, Haematologica.

[71]  Jerilyn A. Walker,et al.  Analysis of the human Alu Ya-lineage. , 2004, Journal of molecular biology.

[72]  Fred H. Gage,et al.  Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition , 2005, Nature.

[73]  Ravi Sachidanandam,et al.  Developmentally Regulated piRNA Clusters Implicate MILI in Transposon Control , 2007, Science.

[74]  Wolf Reik,et al.  Mice Deficient in APOBEC2 and APOBEC3 , 2005, Molecular and Cellular Biology.

[75]  Ryan E. Mills,et al.  Recently mobilized transposons in the human and chimpanzee genomes. , 2006, American journal of human genetics.

[76]  E. Ostertag,et al.  Twin priming: a proposed mechanism for the creation of inversions in L1 retrotransposition. , 2001, Genome research.

[77]  M. Gellert,et al.  DNA Transposition by the RAG1 and RAG2 Proteins A Possible Source of Oncogenic Translocations , 1998, Cell.

[78]  N. Zingler,et al.  Methyl-CpG-binding protein 2 represses LINE-1 expression and retrotransposition but not Alu transcription. , 2001, Nucleic acids research.

[79]  Kelley Harris,et al.  The L1 Retrotranspositional Stimulation by Particulate and Soluble Cadmium Exposure is Independent of the Generation of DNA Breaks , 2006, International journal of environmental research and public health.

[80]  Bratthauer Gl,et al.  Active LINE-1 retrotransposons in human testicular cancer. , 1992 .

[81]  J. V. Moran,et al.  DNA repair mediated by endonuclease-independent LINE-1 retrotransposition , 2002, Nature Genetics.

[82]  M. Batzer,et al.  Alu repeats and human disease. , 1999, Molecular genetics and metabolism.

[83]  Haig H. Kazazian,et al.  An estimated frequency of endogenous insertional mutations in humans , 1999, Nature Genetics.

[84]  A. Knudson,et al.  Endogenous DNA double-strand breaks: Production, fidelity of repair, and induction of cancer , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[85]  Bronwen L. Aken,et al.  Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences , 2007, Nature.

[86]  M. Neuberger,et al.  Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. , 2005, Molecular biology and evolution.

[87]  M. Batzer,et al.  Endonuclease-independent insertion provides an alternative pathway for L1 retrotransposition in the human genome , 2007, Nucleic acids research.

[88]  R. Hodges,et al.  LINE-1 retrotransposition requires the nucleic acid chaperone activity of the ORF1 protein. , 2005, Journal of molecular biology.

[89]  Jeremy M. Stark,et al.  Double-strand breaks and tumorigenesis. , 2001, Trends in cell biology.

[90]  Y. Lebedev,et al.  Long L1 insertions in human gene introns specifically reduce the content of corresponding primary transcripts , 2006, Genetica.

[91]  Gratien G. Prefontaine,et al.  Developmentally Regulated Activation of a SINE B2 Repeat as a Domain Boundary in Organogenesis , 2007, Science.

[92]  T. Eickbush,et al.  R2 Target-Primed Reverse Transcription: Ordered Cleavage and Polymerization Steps by Protein Subunits Asymmetrically Bound to the Target DNA , 2005, Molecular and Cellular Biology.

[93]  Jeffrey S. Han,et al.  Gene-breaking: a new paradigm for human retrotransposon-mediated gene evolution. , 2005, Genome research.

[94]  P. Deininger,et al.  LINE-1 RNA splicing and influences on mammalian gene expression , 2006, Nucleic acids research.

[95]  T. Matise,et al.  Widespread RNA editing of embedded alu elements in the human transcriptome. , 2004, Genome research.

[96]  R. Deberardinis,et al.  Rapid amplification of a retrotransposon subfamily is evolving the mouse genome , 1998, Nature Genetics.

[97]  Jef D Boeke,et al.  High Frequency Retrotransposition in Cultured Mammalian Cells , 1996, Cell.

[98]  John F. Y. Brookfield,et al.  The ecology of the genome — mobile DNA elements and their hosts , 2005, Nature Reviews Genetics.

[99]  K. Ramos,et al.  Activation of human long interspersed nuclear element 1 retrotransposition by benzo(a)pyrene, an ubiquitous environmental carcinogen. , 2006, Cancer research.

[100]  J. Löwer,et al.  APOBEC3 Proteins Inhibit Human LINE-1 Retrotransposition* , 2006, Journal of Biological Chemistry.

[101]  J. Nathans,et al.  Effects of L1 retrotransposon insertion on transcript processing, localization and accumulation: lessons from the retinal degeneration 7 mouse and implications for the genomic ecology of L1 elements. , 2006, Human molecular genetics.

[102]  Xi Shi,et al.  Cell Divisions Are Required for L1 Retrotransposition , 2006, Molecular and Cellular Biology.

[103]  P. D. de Jong,et al.  L1 retrotransposition can occur early in human embryonic development. , 2007, Human molecular genetics.

[104]  K. Murphy,et al.  Retrotransposon insertion in SILV is responsible for merle patterning of the domestic dog , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[105]  Dimitri A Kramerov,et al.  Short retroposons in eukaryotic genomes. , 2005, International review of cytology.

[106]  E. Meese,et al.  The human L1 promoter: variable transcription initiation sites and a major impact of upstream flanking sequence on promoter activity. , 2004, Genome research.

[107]  H. Kazazian,et al.  LINE Drive Retrotransposition and Genome Instability , 2002, Cell.

[108]  Alexander Rich,et al.  Widespread A-to-I RNA Editing of Alu-Containing mRNAs in the Human Transcriptome , 2004, PLoS biology.

[109]  J. Connolly,et al.  Comparative expression of the LINE-1 p40 protein in human breast carcinomas and normal breast tissues. , 1996, Oncology research.

[110]  James A. Cuff,et al.  Genome sequence, comparative analysis and haplotype structure of the domestic dog , 2005, Nature.

[111]  J. Xiong,et al.  Increased level of polymerase III transcribed Alu RNA in hepatocellular carcinoma tissue , 2005, Molecular carcinogenesis.

[112]  A. Blancher,et al.  HIGM syndrome caused by insertion of an AluYb8 element in exon 1 of the CD40LG gene , 2006, Immunogenetics.

[113]  E. Ostertag,et al.  A novel testis ubiquitin-binding protein gene arose by exon shuffling in hominoids. , 2007, Genome research.

[114]  J. V. Moran,et al.  L1 retrotransposition in nondividing and primary human somatic cells. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[115]  Takuji Sasaki,et al.  The map-based sequence of the rice genome , 2005, Nature.

[116]  J. V. Moran,et al.  A YY1-binding site is required for accurate human LINE-1 transcription initiation. , 2004, Nucleic acids research.

[117]  J. V. Moran,et al.  Selective inhibition of Alu retrotransposition by APOBEC3G. , 2007, Gene.

[118]  N. Yang,et al.  L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells , 2006, Nature Structural &Molecular Biology.

[119]  M. Batzer,et al.  Recently integrated Alu elements and human genomic diversity. , 2003, Molecular biology and evolution.

[120]  D. Cooper,et al.  Detection of two Alu insertions in the CFTR gene. , 2008, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[121]  T. Hayakawa,et al.  An Alu retrotransposition‐mediated deletion of CHD7 in a patient with CHARGE syndrome , 2007, American journal of medical genetics. Part A.

[122]  Ivan N. Shatsky,et al.  Efficient Translation Initiation Directed by the 900-Nucleotide-Long and GC-Rich 5′ Untranslated Region of the Human Retrotransposon LINE-1 mRNA Is Strictly Cap Dependent Rather than Internal Ribosome Entry Site Mediated , 2007, Molecular and Cellular Biology.

[123]  Matthew D. Dyer,et al.  Human genomic deletions mediated by recombination between Alu elements. , 2006, American journal of human genetics.

[124]  Li Wang,et al.  Evolutionary scenario for acquisition of CAG repeats in human SCA1 gene. , 2006, Gene.

[125]  S. Martin,et al.  Functional reverse transcriptases encoded by A-type mouse LINE-1: defining the minimal domain by deletion analysis. , 1998, Gene.

[126]  Alexander E Vinogradov,et al.  Genome size and extinction risk in vertebrates , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[127]  N. Okada,et al.  Functional splice sites in a zebrafish LINE and their influence on zebrafish gene expression. , 2007, Gene.

[128]  T. Heidmann,et al.  Role of poly(A) tail length in Alu retrotransposition. , 2005, Genomics.

[129]  T. Bestor,et al.  Sex brings transposons and genomes into conflict. , 2000 .

[130]  Stephen L. Gasior,et al.  Characterization of pre-insertion loci of de novo L1 insertions. , 2007, Gene.

[131]  S. Boissinot,et al.  Selection against Line-1 Retrotransposons Results Principally from Their Ability to Mediate Ectopic Recombination , 2006 .

[132]  J. Löwer,et al.  Analysis of 5' junctions of human LINE-1 and Alu retrotransposons suggests an alternative model for 5'-end attachment requiring microhomology-mediated end-joining. , 2005, Genome research.

[133]  D. Kordis,et al.  Phylogenomic analysis of the L1 retrotransposons in Deuterostomia. , 2006, Systematic biology.

[134]  D. Largaespada,et al.  Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system , 2005, Nature.

[135]  M. Hattori,et al.  RNA polymerase III dependence of the human L1 promoter and possible participation of the RNA polymerase II factor YY1 in the RNA polymerase III transcription system. , 1995, Nucleic acids research.

[136]  J. V. Moran,et al.  Genomic Deletions Created upon LINE-1 Retrotransposition , 2002, Cell.

[137]  H. Wichman,et al.  SINE extinction preceded LINE extinction in sigmodontine rodents: implications for retrotranspositional dynamics and mechanisms , 2005, Cytogenetic and Genome Research.

[138]  Rafaela F. da Silva,et al.  Inhibition of LINE-1 expression in the heart decreases ischemic damage by activation of Akt/PKB signaling. , 2006, Physiological genomics.

[139]  Dan Graur,et al.  Alu-containing exons are alternatively spliced. , 2002, Genome research.

[140]  J C Lee,et al.  Novel homologues of CSBP/p38 MAP kinase: activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles. , 1997, Biochemical and biophysical research communications.

[141]  N. Okada,et al.  LINEs Mobilize SINEs in the Eel through a Shared 3′ Sequence , 2002, Cell.

[142]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[143]  J. V. Moran,et al.  Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres , 2007, Nature.

[144]  Jinfang Li,et al.  The dicistronic RNA from the mouse LINE-1 retrotransposon contains an internal ribosome entry site upstream of each ORF: implications for retrotransposition , 2006, Nucleic acids research.

[145]  J. V. Moran,et al.  Hot L1s account for the bulk of retrotransposition in the human population , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[146]  M. Batzer,et al.  Emergence of primate genes by retrotransposon-mediated sequence transduction , 2006, Proceedings of the National Academy of Sciences.

[147]  A. F. Scott,et al.  Isolation of an active human transposable element. , 1991, Science.

[148]  C. Feschotte,et al.  The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. , 2007, Genome research.

[149]  E. Lander,et al.  A large family of ancient repeat elements in the human genome is under strong selection. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[150]  J. Schultz,et al.  Exonization of active mouse L1s: a driver of transcriptome evolution? , 2007, BMC Genomics.

[151]  T. Eickbush,et al.  Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition , 1993, Cell.

[152]  Richard Cordaux,et al.  Estimating the retrotransposition rate of human Alu elements. , 2006, Gene.

[153]  J. V. Moran,et al.  LINE-1 retrotransposition in human embryonic stem cells. , 2007, Human molecular genetics.

[154]  T. Eickbush,et al.  The RTE class of non-LTR retrotransposons is widely distributed in animals and is the origin of many SINEs. , 1998, Molecular biology and evolution.

[155]  M. Batzer,et al.  Alu retrotransposition-mediated deletion. , 2005, Journal of molecular biology.

[156]  R. Gay,et al.  The L1 Retroelement-related p40 Protein Induces p38δ MAP Kinase , 2004 .

[157]  C. Férec,et al.  A large genomic deletion in the PDHX gene caused by the retrotranspositional insertion of a full‐length LINE‐1 element , 2007, Human mutation.

[158]  Jef D Boeke,et al.  Human L1 Retrotransposon Encodes a Conserved Endonuclease Required for Retrotransposition , 1996, Cell.

[159]  H. Wichman,et al.  Extinction of LINE-1 activity coincident with a major mammalian radiation in rodents , 2005, Cytogenetic and Genome Research.

[160]  E. Ostertag,et al.  SVA elements are nonautonomous retrotransposons that cause disease in humans. , 2003, American journal of human genetics.

[161]  A. Bibiłło,et al.  Role of the Bombyx mori R2 element N-terminal domain in the target-primed reverse transcription (TPRT) reaction , 2005, Nucleic acids research.

[162]  C. Hutchison,et al.  Identification of transcriptional regulatory activity within the 5′ A-type monomer sequence of the mouse LINE-1 retroposon , 1991, Mammalian Genome.

[163]  D. Haussler,et al.  A distal enhancer and an ultraconserved exon are derived from a novel retroposon , 2006, Nature.

[164]  A. Smit,et al.  Functional noncoding sequences derived from SINEs in the mammalian genome. , 2006, Genome research.

[165]  S. Boissinot,et al.  Selection against deleterious LINE-1-containing loci in the human lineage. , 2001, Molecular biology and evolution.

[166]  Jeffrey S. Han,et al.  Active retrotransposition by a synthetic L1 element in mice , 2006, Proceedings of the National Academy of Sciences.

[167]  Y. Sakaki,et al.  Identification of critical CpG sites for repression of L1 transcription by DNA methylation. , 1997, Gene.

[168]  C. Schmid,et al.  Alu transcripts: cytoplasmic localisation and regulation by DNA methylation. , 1994, Nucleic acids research.

[169]  J. Luban,et al.  Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1 , 2004, Nature.

[170]  T. Bestor,et al.  Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L , 2004, Nature.

[171]  H. Lauke,et al.  Cell Type-specific Expression of LINE-1 Open Reading Frames 1 and 2 in Fetal and Adult Human Tissues* , 2004, Journal of Biological Chemistry.

[172]  C. Schmid,et al.  Flanking sequences of an Alu source stimulate transcription in vitro by interacting with sequence-specific transcription factors , 2004, Journal of Molecular Evolution.

[173]  P. Deininger,et al.  Inviting instability: Transposable elements, double-strand breaks, and the maintenance of genome integrity. , 2007, Mutation research.

[174]  Jean L. Chang,et al.  Initial sequence of the chimpanzee genome and comparison with the human genome , 2005, Nature.

[175]  J. Skowroński,et al.  Unit-length line-1 transcripts in human teratocarcinoma cells , 1988, Molecular and cellular biology.

[176]  Oleksiy Kohany,et al.  Evolutionary diversity and potential recombinogenic role of integration targets of Non-LTR retrotransposons. , 2005, Molecular biology and evolution.

[177]  J. V. Moran,et al.  Mobile elements and mammalian genome evolution. , 2003, Current opinion in genetics & development.

[178]  O. J. Semmes,et al.  Human LINE-1 retrotransposon induces DNA damage and apoptosis in cancer cells , 2006, Cancer Cell International.

[179]  J. V. Moran,et al.  Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[180]  T. Hayakawa,et al.  Alu-mediated inactivation of the human CMP- N-acetylneuraminic acid hydroxylase gene , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[181]  P. Patel,et al.  Friedreich's Ataxia: Autosomal Recessive Disease Caused by an Intronic GAA Triplet Repeat Expansion , 1996, Science.

[182]  D. Labuda,et al.  Alu RNA transcripts in human embryonal carcinoma cells. Model of post-transcriptional selection of master sequences. , 1992, Journal of molecular biology.

[183]  A. Furano,et al.  Fruit flies and humans respond differently to retrotransposons. , 2002, Current opinion in genetics & development.

[184]  Jinchuan Xing,et al.  Differential alu mobilization and polymorphism among the human and chimpanzee lineages. , 2004, Genome research.

[185]  L. Shaffer,et al.  Shuffling of genes within low-copy repeats on 22q11 (LCR22) by Alu-mediated recombination events during evolution. , 2003, Genome research.

[186]  L. N. van de Lagemaat,et al.  Retroelement distributions in the human genome: variations associated with age and proximity to genes. , 2002, Genome research.

[187]  Jared C. Roach,et al.  A Third Approach to Gene Prediction Suggests Thousands of Additional Human Transcribed Regions , 2006, PLoS Comput. Biol..

[188]  Stephen L. Gasior,et al.  The human LINE-1 retrotransposon creates DNA double-strand breaks. , 2006, Journal of molecular biology.

[189]  P. Deininger,et al.  Heavy Metals Stimulate Human LINE-1 Retrotransposition , 2005, International journal of environmental research and public health.

[190]  Brian Charlesworth,et al.  On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. , 2002, Molecular biology and evolution.

[191]  Hirohiko Hirochika,et al.  Retrotransposon-Induced Mutations in Grape Skin Color , 2004, Science.

[192]  J. V. Moran,et al.  Ribonucleoprotein particle formation is necessary but not sufficient for LINE-1 retrotransposition. , 2005, Human molecular genetics.

[193]  J. Jurka,et al.  A novel class of SINE elements derived from 5S rRNA. , 2003, Molecular biology and evolution.

[194]  J. V. Moran,et al.  Multiple Fates of L1 Retrotransposition Intermediates in Cultured Human Cells , 2005, Molecular and Cellular Biology.

[195]  S. Dupas,et al.  Genome ecosystem and transposable elements species. , 2007, Gene.

[196]  E. Ostertag,et al.  L1 integration in a transgenic mouse model. , 2005, Genome research.

[197]  Giovanni Parmigiani,et al.  Human L1 Retrotransposition Is Associated with Genetic Instability In Vivo , 2002, Cell.