The Local Universe as Seen in the Far-Infrared and Far-Ultraviolet: A Global Point of View of the Local Recent Star Formation

We select far-infrared (FIR: 60 μm) and far-ultraviolet (FUV: 530 Å) samples of nearby galaxies in order to discuss the biases encountered by monochromatic surveys (FIR or FUV). Very different volumes are sampled by each selection, and much care is taken to apply volume corrections to all the analyses. The distributions of the bolometric luminosity of young stars are compared for both samples: they are found to be consistent with each other for galaxies of intermediate luminosities, but some differences are found for high (>5 × 1010 L☉) luminosities. The shallowness of the IRAS survey prevents us from securing a comparison at low luminosities (<2 × 109 L☉). The ratio of the total infrared (TIR) luminosity to the FUV luminosity is found to increase with the bolometric luminosity in a similar way for both samples up to 5 × 1010 L☉. Brighter galaxies are found to have a different behavior according to their selection: the LTIR/LFUV ratio of the FUV-selected galaxies brighter than 5 × 1010 L☉ reaches a plateau, whereas LTIR/LFUV continues to increase with the luminosity of bright galaxies selected in FIR. The volume-averaged specific star formation rate (SFR per unit galaxy stellar mass, SSFR) is found to decrease toward massive galaxies within each selection. The mean values of the SSFR are found to be larger than those measured for optical and NIR-selected samples over the whole mass range for the FIR selection, and for masses larger than 1010 M☉ for the FUV selection. Luminous and massive galaxies selected in FIR appear as active as galaxies with similar characteristics detected at z ∼ 0.7.

[1]  D. Schiminovich,et al.  IR and UV Galaxies at z = 0.6: Evolution of Dust Attenuation and Stellar Mass as Revealed by SWIRE and GALEX , 2007, astro-ph/0701737.

[2]  A. Szalay,et al.  The Diverse Properties of the Most Ultraviolet-Luminous Galaxies Discovered by GALEX , 2006, astro-ph/0609415.

[3]  A. Heavens,et al.  The star formation histories of galaxies in the sloan digital sky survey , 2006, astro-ph/0608531.

[4]  A. Szalay,et al.  Ultraviolet and Far-Infrared-selected Star-forming Galaxies at z = 0: Differences and Overlaps , 2006, astro-ph/0604058.

[5]  Dario Fadda,et al.  Star Formation and Extinction in Redshift z~2 Galaxies: Inferences from Spitzer MIPS Observations , 2006, astro-ph/0602596.

[6]  A. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[7]  D. Schiminovich,et al.  Star Formation in the Nearby Universe: The Ultraviolet and Infrared Points of View , 2006, astro-ph/0601235.

[8]  O. Ilbert,et al.  Ultraviolet-to-far infrared properties of Lyman break galaxies and luminous infrared galaxies at z ∼ 1 , 2006, astro-ph/0601123.

[9]  G. Gavazzi,et al.  UV Dust Attenuation in Normal Star-Forming Galaxies. I. Estimating the LTIR/LFUV Ratio , 2005, astro-ph/0510165.

[10]  J. Dunlop,et al.  Linking Stellar Mass and Star Formation in Spitzer MIPS 24 μm Galaxies , 2005, astro-ph/0510070.

[11]  R. Bender,et al.  Specific Star Formation Rates to Redshift 5 from the FORS Deep Field and the GOODS-S Field , 2005, astro-ph/0509197.

[12]  E. Floc’h,et al.  Optical Morphology Evolution of Infrared Luminous Galaxies in GOODS-N , 2005, astro-ph/0509037.

[13]  The evolution of the ultraviolet and infrared luminosity densities in the universe at 0 , 2005, astro-ph/0508124.

[14]  Tucson,et al.  Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 ≲ z ≲ 1* , 2005, astro-ph/0506462.

[15]  Christopher D. Martin,et al.  Spitzer View on the Evolution of Star-forming Galaxies from z = 0 to z ~ 3 , 2005, astro-ph/0505101.

[16]  H. Rix,et al.  Toward an Understanding of the Rapid Decline of the Cosmic Star Formation Rate , 2005, astro-ph/0502246.

[17]  D. Schiminovich,et al.  Testing the Empirical Relation between Ultraviolet Color and Attenuation of Galaxies , 2005 .

[18]  R. Nichol,et al.  The Sloan Digital Sky Survey u‐band Galaxy Survey: luminosity functions and evolution , 2005, astro-ph/0501110.

[19]  A. Szalay,et al.  The Properties of Ultraviolet-luminous Galaxies at the Current Epoch , 2004, astro-ph/0412577.

[20]  A. Szalay,et al.  Dust Attenuation in the Nearby Universe: A Comparison between Galaxies Selected in the Ultraviolet and in the Far-Infrared , 2004, astro-ph/0411343.

[21]  A. Szalay,et al.  The Star Formation Rate Function of the Local Universe , 2004, astro-ph/0411307.

[22]  G. Hill,et al.  Specific Star Formation Rates to Redshift 1.5 , 2004, astro-ph/0412358.

[23]  T. Budavari,et al.  The GALEX-VVDS Measurement of the Evolution of the Far-Ultraviolet Luminosity Density and the Cosmic Star Formation Rate , 2004, astro-ph/0411424.

[24]  A. Szalay,et al.  The On-Orbit Performance of the Galaxy Evolution Explorer , 2004, astro-ph/0411310.

[25]  T. Takeuchi,et al.  Mid-infrared luminosity as an indicator of the total infrared luminosity of galaxies , 2004, astro-ph/0411196.

[26]  K. Meisenheimer,et al.  GEMS: Which Galaxies Dominate the z ~ 0.7 Ultraviolet Luminosity Density? , 2004, astro-ph/0408289.

[27]  Santiago,et al.  The ESO-Sculptor Survey: Evolution of late-type galaxies at redshifts 0.1–0.5 , 2004, astro-ph/0404236.

[28]  J. Dunlop,et al.  The star-formation history of the Universe from the stellar populations of nearby galaxies , 2004, Nature.

[29]  Cambridge,et al.  The star formation rate of the Universe at z~ 6 from the Hubble Ultra-Deep Field , 2004, astro-ph/0403223.

[30]  A. Boselli,et al.  UV and FIR selected samples of galaxies in the local Universe. Dust extinction and star formation rates , 2004, astro-ph/0402259.

[31]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[32]  S. Okamura,et al.  Subaru Deep Survey. VI. A Census of Lyman Break Galaxies at z ≃ 4 and 5 in the Subaru Deep Fields: Clustering Properties , 2003, astro-ph/0309657.

[33]  V. Buat,et al.  Star formation rate in galaxies from UV, IR, and Hα estimators , 2003, astro-ph/0308531.

[34]  T. Takeuchi,et al.  The Luminosity Function of IRAS Point Source Catalog Redshift Survey Galaxies , 2003 .

[35]  E. Bell Estimating Star Formation Rates from Infrared and Radio Luminosities: The Origin of the Radio-Infrared Correlation , 2002, astro-ph/0212121.

[36]  H. Dole,et al.  Modelling infrared galaxy evolution using a phenomenological approach , 2002, astro-ph/0209115.

[37]  Cambridge,et al.  A Comparison of Independent Star Formation Diagnostics for an Ultraviolet-selected Sample of Nearby Galaxies , 2001, astro-ph/0104425.

[38]  A. Connolly,et al.  Toward a Resolution of the Discrepancy between Different Estimators of Star Formation Rate , 2001, astro-ph/0103253.

[39]  M. Rowan-Robinson,et al.  The Star Formation History of the Universe: An Infrared Perspective , 2001 .

[40]  K. Kohno,et al.  Impact of Future Submillimeter and Millimeter Large Facilities on the Studies of Galaxy Formation and Evolution , 2001, astro-ph/0101555.

[41]  G. Gavazzi,et al.  1.65 Micron (H Band) Surface Photometry of Galaxies. VI. The History of Star Formation in Normal Late-Type Galaxies , 2000, astro-ph/0011016.

[42]  H. Matsuhara,et al.  Exploring Galaxy Evolution from Infrared Number Counts and Cosmic Infrared Background , 2000, astro-ph/0009460.

[43]  E. Bell,et al.  Stellar Mass-to-Light Ratios and the Tully-Fisher Relation , 2000, astro-ph/0008056.

[44]  G. Helou,et al.  The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths , 2000, astro-ph/0011014.

[45]  T. Takeuchi,et al.  Tests of Statistical Methods for Estimating Galaxy Luminosity Function and Applications to the Hubble Deep Field , 2000, astro-ph/0003127.

[46]  C. C. Steidel,et al.  Multiwavelength Observations of Dusty Star Formation at Low and High Redshift , 2000, astro-ph/0001126.

[47]  K. Gordon,et al.  The Flux Ratio Method for Determining the Dust Attenuation of Starburst Galaxies , 1999, astro-ph/9912034.

[48]  T. Takeuchi Application of the Information Criterion to the Estimation ofGalaxy Luminosity Function , 1999, astro-ph/9909324.

[49]  S. Maddox,et al.  The PSCz catalogue , 1999, astro-ph/9909191.

[50]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[51]  O. Fèvre,et al.  15 Micron Infrared Space Observatory Observations of the 1415+52 Canada-France Redshift Survey Field: The Cosmic Star Formation Rate as Derived from Deep Ultraviolet, Optical, Mid-Infrared, and Radio Photometry , 1999 .

[52]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[53]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[54]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[55]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[56]  L. Cowie,et al.  New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields , 1996, astro-ph/9606079.

[57]  T. Heckman,et al.  Internal Absorption and the Luminosity of Disk Galaxies , 1996 .

[58]  O. Fèvre,et al.  The Canada-France Redshift Survey: The Luminosity Density and Star Formation History of the Universe to z ~ 1 , 1996, astro-ph/9601050.

[59]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .