Group Classification of the General Evolution Equation: Local and Quasilocal Symmetries

We give a review of our recent results on group classification of the most general nonlinear evolution equation in one spatial variable. The method applied relies heavily on the results of our paper Acta Appl. Math., 69, 2001, in which we obtain the complete solution of group classification problem for general quasilinear evolution equation.

[1]  R. Zhdanov,et al.  SYMMETRIES AND EXACT SOLUTIONS OF NONLINEAR DIRAC EQUATIONS , 2006, math-ph/0609052.

[2]  R. Cherniha,et al.  Symmetries, ansätze and exact solutions of nonlinear second-order evolution equations with convection terms, II , 1998, European Journal of Applied Mathematics.

[3]  R. Zhdanov,et al.  Group classification of nonlinear wave equations , 2004, nlin/0405069.

[4]  F. Gungor,et al.  Symmetry classification of KdV-type nonlinear evolution equations , 2002, nlin/0201063.

[5]  S. El-Labany,et al.  Group classification and symmetry reduction of variable coefficient nonlinear diffusion-convection equation , 2002 .

[6]  F. Güngör Group classification and exact solutions of a radially symmetric porous-medium equation , 2002 .

[7]  R. Zhdanov,et al.  The Structure of Lie Algebras and the Classification Problem for Partial Differential Equations , 2000, math-ph/0005013.

[8]  R. Zhdanov,et al.  On preliminary symmetry classification of nonlinear Schrödinger equations with some applications to Doebner-Goldin models , 2000 .

[9]  R. Zhdanov,et al.  Group classification of heat conductivity equations with a nonlinear source , 1999, math-ph/9906003.

[10]  R. Cherniha,et al.  Symmetries, ansätze and exact solutions of nonlinear second-order evolution equations with convection terms , 1998, European Journal of Applied Mathematics.

[11]  V. V. Pukhnachov,et al.  Evolution Equations and Lagrangian Coordinates , 1997 .

[12]  M. Gandarias Classical point symmetries of a porous medium equation , 1996 .

[13]  C. Sophocleous,et al.  On point transformations of generalized nonlinear diffusion equations , 1995 .

[14]  M. Edwards Classical symmetry reductions of nonlinear diffusion-convection equations , 1994 .

[15]  P. Baveye,et al.  Group classification and symmetry reductions of the non-linear diffusion-convection equation ut=(D(u)ux)x−K'(u)ux , 1994 .

[16]  Pavel Winternitz,et al.  Symmetry classes of variable coefficient nonlinear Schrodinger equations , 1993 .

[17]  Gregory J. Reid,et al.  Finding abstract Lie symmetry algebras of differential equations without integrating determining equations , 1991, European Journal of Applied Mathematics.

[18]  I. Akhatov,et al.  Nonlocal symmetries. Heuristic approach , 1991 .

[19]  Alexander Oron,et al.  Some symmetries of the nonlinear heat and wave equations , 1986 .

[20]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[21]  J. Cole,et al.  Similarity methods for differential equations , 1974 .