Low-Power Wireless Transceiver With 67-nW Differential Pulse-Position Modulation Transmitter

This article presents a low-power wireless narrowband (NB) transceiver consisting of a 434-MHz NB transmitter (NBTX) and a 434-MHz NB receiver (NBRX) implemented in 0.18 <inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> CMOS. The NBTX utilizes differential pulse-position modulation (DPPM) to decrease consumed energy per bit (EPB) by up to 67% compared to on-off keying (OOK). The packet error performance of DPPM with a soft-decision decoding scheme is analyzed. According to the results, the packet error ratio (PER) does not deteriorate compared to OOK except at very low signal-to-noise levels. The lowest power consumption of the NBTX is 8.3 <inline-formula> <tex-math notation="LaTeX">$\mu \text{W}$ </tex-math></inline-formula> when DPPM data is transmitted continuously. Utilizing packet-mode transmission, the average power consumption is 67 nW at a data rate of 4.8 kbps. The transmitted data was received with a PER of 0.1% by a receiver placed at a 30-meter distance from the NBTX. With a higher power consumption of 2.5 <inline-formula> <tex-math notation="LaTeX">$\mu \text{W}$ </tex-math></inline-formula> at the same data rate, the estimated line-of-sight (LOS) uplink range is up to 200 meters. The NBRX is a mixer-first uncertain-IF receiver. A temperature-compensated ring oscillator (TCRO) is utilized as a local oscillator. Its measured deviation of frequency is from +0.1% to −1.2% over a temperature range from −40 to +85 °C. The NBRX utilizes Manchester encoding and the sensitivity is −87 to −82 dBm over the temperature range at a data rate of 40 kbps. The NBRX consumes 85 <inline-formula> <tex-math notation="LaTeX">$\mu \text{W}$ </tex-math></inline-formula>.

[1]  Daniel Zwillinger Differential PPM has a higher throughput than PPM for the band-limited and average-power-limited optical channel (corresp.) , 1988, IEEE Trans. Inf. Theory.

[2]  Brian P. Otis,et al.  A Sub-100 $\mu$ W MICS/ISM Band Transmitter Based on Injection-Locking and Frequency Multiplication , 2011, IEEE Journal of Solid-State Circuits.

[3]  Hoi-Jun Yoo,et al.  A 79 pJ/b 80 Mb/s Full-Duplex Transceiver and a $42.5\;\upmu\text{W}$ 100 kb/s Super-Regenerative Transceiver for Body Channel Communication , 2016, IEEE Journal of Solid-State Circuits.

[4]  Kari Halonen,et al.  Low-Power Single-Stage Narrowband Transmitter Front-End for 433-MHz Band , 2018, 2018 IEEE International Symposium on Circuits and Systems (ISCAS).

[5]  Simon Haykin,et al.  An Introduction to Analog and Digital Communications , 1989 .

[6]  Henrik Sjöland,et al.  A 2.45GHz, 50uW wake-up receiver front-end with −88dBm sensitivity and 250kbps data rate , 2014, ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC).

[7]  S. Gambini,et al.  A 52 $\mu$ W Wake-Up Receiver With $-$ 72 dBm Sensitivity Using an Uncertain-IF Architecture , 2009, IEEE Journal of Solid-State Circuits.

[8]  Soo-Won Kim,et al.  A 13.56 MHz CMOS ring oscillator for wireless power transfer receiver system , 2014, TENCON 2014 - 2014 IEEE Region 10 Conference.

[9]  Jusung Kim,et al.  A Temperature Compensated RF $LC$ Clock Generator With ±50-ppm Frequency Accuracy From −40 °C to 80 °C , 2019, IEEE Transactions on Microwave Theory and Techniques.

[10]  G. Bas,et al.  Temperature Compensated 2.45 GHz Ring Oscillator with Double Frequency Control , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[11]  Sandeep K. S. Gupta,et al.  BER performance analysis of an on-off keying based minimum energy coding for energy constrained wireless sensor applications , 2005, IEEE International Conference on Communications, 2005. ICC 2005. 2005.

[12]  Jan M. Rabaey,et al.  A 2.4 GHz Interferer-Resilient Wake-Up Receiver Using A Dual-IF Multi-Stage N-Path Architecture , 2016, IEEE Journal of Solid-State Circuits.

[13]  M. Schwartz,et al.  Communication Systems and Techniques , 1996, IEEE Communications Magazine.

[14]  Anantha Chandrakasan,et al.  A Sub-nW 2.4 GHz Transmitter for Low Data-Rate Sensing Applications , 2014, IEEE Journal of Solid-State Circuits.

[15]  Dhon-Gue Lee,et al.  Narrowband Transmitters: Ultralow-Power Design , 2015, IEEE Microwave Magazine.

[16]  Kari Halonen,et al.  A 180-nW static power UWB IR transmitter front-end for energy harvesting applications , 2017, 2017 IEEE International Symposium on Circuits and Systems (ISCAS).

[17]  Sangwook Nam,et al.  Low Power OOK Transmitter for Wireless Capsule Endoscope , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[18]  Guoqiang Zhang,et al.  A 3.2 ppm/°C Second-Order Temperature Compensated CMOS On-Chip Oscillator Using Voltage Ratio Adjusting Technique , 2018, IEEE Journal of Solid-State Circuits.

[19]  T. Aaron Gulliver,et al.  Soft-Decision Decoding for Differential Pulse-Position Modulation (DPPM) Over Optical Wireless Communications , 2006, IEEE Vehicular Technology Conference.

[20]  Tsung-Hsien Lin,et al.  A 330-µW 400-MHz BPSK Transmitter in 0.18- µm CMOS for Biomedical Applications , 2016, IEEE Trans. Circuits Syst. II Express Briefs.

[21]  Anantha Chandrakasan,et al.  A 350μW CMOS MSK transmitter and 400μW OOK super-regenerative receiver for Medical Implant Communications , 2009, 2008 IEEE Symposium on VLSI Circuits.

[22]  Hoi-Jun Yoo,et al.  21.1 A 79pJ/b 80Mb/s full-duplex transceiver and a 42.5μW 100kb/s super-regenerative transceiver for body channel communication , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[23]  R. Kalidoss,et al.  Introduction to Analog and Digital Communication , 2016 .

[24]  Yong Ping Xu,et al.  A 52 pJ/bit OOK transmitter with adaptable data rate , 2008, 2008 IEEE Asian Solid-State Circuits Conference.

[25]  Kari Halonen,et al.  45.2% Energy efficiency improvement of UWB IR Tx by use of differential PPM in 180nm CMOS , 2016, 2016 IEEE International Symposium on Circuits and Systems (ISCAS).

[26]  Kazunori Watanabe,et al.  An all 0.5V, 1Mbps, 315MHz OOK transceiver with 38-µW career-frequency-free intermittent sampling receiver and 52-µW class-F transmitter in 40-nm CMOS , 2012, 2012 Symposium on VLSI Circuits (VLSIC).

[27]  Sang-Gug Lee,et al.  A 1mW current-reuse CMOS differential LC-VCO with low phase noise , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[28]  Kadaba Lakshmikumar,et al.  A Process and Temperature Compensated Two-Stage Ring Oscillator , 2007, 2007 IEEE Custom Integrated Circuits Conference.

[29]  Joseph M. Kahn,et al.  Differential pulse-position modulation for power-efficient optical communication , 1999, IEEE Trans. Commun..

[30]  Xuan Zhang,et al.  A Low-Power, Process-and- Temperature- Compensated Ring Oscillator With Addition-Based Current Source , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.