Universal Bounds for Traces of the Dirichlet Laplace Operator
暂无分享,去创建一个
[1] René Carmona,et al. Can one hear the dimension of a fractal? , 1986 .
[2] P. Lemberger. Segregation in the Falicov-Kimball model , 1992 .
[3] H. McKean,et al. Curvature and the Eigenvalues of the Laplacian , 1967 .
[4] Reinhard Racke,et al. Elastic and electro-magnetic waves in infinite waveguides , 2008 .
[5] P. Trillenberg,et al. Refined asymptotic expansion for the partition function of unbounded quantum billiards , 1990 .
[6] Ulrich Brehm,et al. Lattice triangulations of E 3 and of the 3-torus , 2009 .
[7] E. Lieb,et al. On semi-classical bounds for eigenvalues of Schrödinger operators , 1978 .
[8] T. Merkle,et al. Conformally closed Poincaré-Einstein metrics with intersecting scale singularities , 2008 .
[9] Rupert L. Frank,et al. Eigenvalue estimates for Schrödinger operators on metric trees , 2007, 0710.5500.
[10] Lance Smith,et al. The asymptotics of the heat equation for a boundary value problem , 1981 .
[11] E. Krahn,et al. Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises , 1925 .
[13] E. Davies,et al. Trace properties of the Dirichlet Laplacian , 1985 .
[14] M. Kac. On Some Connections between Probability Theory and Differential and Integral Equations , 1951 .
[15] M. Berg. On the spectrum of the Dirichlet Laplacian for horn-shaped regions in Rn with infinite volume , 1984 .
[16] B. Kaltenbacher,et al. Iterative methods for nonlinear ill-posed problems in Banach spaces: convergence and applications to parameter identification problems , 2009 .
[17] Wolfgang Kühnel,et al. Hamiltonian Submanifolds of Regular Polytopes , 2008, Discret. Comput. Geom..
[18] T. Weidl,et al. Improved Berezin-Li-Yau inequalities with a remainder term , 2007, 0711.4925.
[19] V. Ivrii. Microlocal Analysis and Precise Spectral Asymptotics , 1998 .
[20] J. Fleckinger,et al. Heat Equation on the Triadic Von Koch Snowflake: Asymptotic and Numerical Analysis , 1995 .
[21] A. Melas. A lower bound for sums of eigenvalues of the Laplacian , 2002 .
[22] Russell M. Brown. The trace of the heat kernel in Lipschitz domains , 1993 .