Towards intelligent structures: active control of buckling

The buckling of compressively-loaded members is one of the most important factors limiting the overall strength and stability of a structure. I have developed novel techniques for using active control to wiggle a structural element in such a way that buckling is prevented. I present the results of analysis, simulation, and experimentation to show that buckling can be prevented through computer-controlled adjustment of dynamical behavior.

[1]  Douglas K. Lindner,et al.  Miniaturized power converters for smart-structure applications , 1993, Smart Structures.

[2]  Tesfay Meressi,et al.  Buckling control of a flexible beam using piezoelectric actuators , 1993 .

[3]  D. S. Dugdale,et al.  Introduction to the Mechanics of Solids , 1967 .

[4]  Raymond Palmer Jefferis FEEDBACK CONTROL OF THE BUCKLING INSTABILITY IN AN AXIALLY COMPRESSED THIN ELASTIC BEAM , 1968 .

[5]  C. I. Tseng,et al.  Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: A piezoelectric finite element approach , 1990 .

[6]  T. T. Soong,et al.  Random Vibration of Mechanical and Structural Systems , 1992 .

[7]  B. F. Spencer,et al.  Active Structural Control: Theory and Practice , 1992 .

[8]  W. Siebert Circuits, Signals and Systems , 1985 .

[9]  Mario Paz,et al.  Structural Dynamics: Theory and Computation , 1981 .

[10]  K. Chandrashekhara,et al.  Active buckling control of smart composite plates-finite-element analysis , 1993 .

[11]  Ronald L. Spangler,et al.  Robust Broadband Control of Flexible Structures Using Integral Piezoelectric Elements , 1993 .

[12]  Feng Zhao,et al.  Phase Space Navigator: Towards Automating Control Synthesis in Phase Spaces for Nonlinear Control Systems , 1991 .

[13]  Edward F. Crawley,et al.  The Feasibility of Embedded Electronics for Intelligent Structures , 1992 .

[14]  Asme,et al.  Active materials and adaptive structures : proceedings of the ADPA/AIAA/ASME/SPIE Conference on Active Materials and Adaptive Structures, 4-8 November 1991, Alexandria, Virginia , 1992 .

[15]  Eric H. Anderson,et al.  Piezoceramic induced strain actuation of one- and two-dimensional structures , 1989 .

[16]  Ichiro Hagiwara,et al.  DEVELOPMENT OF A COLLAPSE MODE CONTROL METHOD FOR SIDE MEMBERS IN VEHICLE COLLISIONS. FRONTAL CRASH SAFETY TECHNOLOGIES FOR THE 90'S , 1991 .

[17]  S. R. Heller,et al.  BUCKLING OF LONG SLENDER SHIPS DUE TO WAVE-INDUCED WHIPPING , 1967 .

[18]  Francis C. Moon,et al.  Modal Sensors/Actuators , 1990 .

[19]  Ahmad Safari,et al.  Thin film 0–3 polymer/piezoelectric ceramic composites: Piezoelectric paints , 1989 .

[20]  이명재 특집 - 건축구조기술의 현황과 실제 : 건축에서의 제진구조 기술 ( Active Vibration Control for Architectural Structure ) , 1995 .

[21]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[22]  S. Egusa,et al.  Poling characteristics of PZT/epoxy piezoelectric paints , 1993 .

[23]  Mohammed S El Naschie,et al.  Stress, Stability and Chaos in Structural Engineering: An Energy Approach , 1990 .

[24]  Amr M. Baz,et al.  Active control of buckling of flexible beams , 1989 .

[25]  Bernardo A. Huberman,et al.  Local Controls for Large Assemblies of Nonlinear Elements , 1994, chao-dyn/9404002.

[26]  Kenneth B. Lazarus,et al.  Induced strain actuation of isotropic and anisotropic plates , 1991 .

[27]  S. Egusa,et al.  Preparation of Piezoelectric Paints and Application as Vibration Modal Sensors , 1994 .

[28]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[29]  Iradj G. Tadjbakhsh,et al.  Optimal control of beams with dynamic loading and buckling , 1991 .

[30]  Shawn E. Burke,et al.  Distributed actuator control design for flexible beams , 1988, Autom..