Growth and characterization of AlInGaN quaternary alloys

We report on the deposition of AlyInxGa1−x−yN in the (0<y<0.15) and (0<x<0.14) composition range by metalorganic chemical vapor deposition. AlInGaN quaternary alloys offer a lattice‐matched platform for InGaN‐based light emitting heterostructure devices. Epitaxial growth of AlInGaN on (0001) sapphire substrates has been achieved at 750 °C. Alloy composition, lattice constants, and band gaps were obtained by energy dispersive spectroscopy, x‐ray diffraction, and room temperature PL. Band edge emissions dominate the PL spectra of these quaternary films. Preliminary data suggest that the lattice constant of AlInGaN can be deduced from chemical composition using Vegard’s law, indicating solid solution in the grown quaternary films.