Deformation and stress in electrode materials for Li-ion batteries

Abstract Structural stability and mechanical integrity of electrode materials during lithiation/delithiation influence the performance of Li-ion batteries. Significant dimensional and volume changes are associated with variations in lattice parameters and transformations of crystalline/amorphous phases that occur during electrochemical cycling. These phenomena, which occur during Li-intercalation/deintercalation, Li-alloying/dealloying and conversion reactions, result in deformations and stress generation in the active cathode and anode materials. Such stresses can cause fragmentation, disintegration, fracturing, and loss in contact between current collectors and the active electrode materials, all of which can also expose fresh surfaces to the electrolyte. These degradation processes ultimately lead to capacity fade with electrochemical cycling for nearly all electrode materials, and are some of the major causes for the eventual failure of a Li-ion cell. Furthermore, severe stresses have made it nearly impossible to use higher capacity anode materials (e.g., Si, Sn) in practical batteries and also limit the ‘usable’ capacity of the present cathode materials (e.g., LiCoO 2 , LiMn 2 O 4 ) to nearly half the theoretical capacity. Against this backdrop, this review presents an overview of the causes and the relative magnitudes of stresses in the various electrode materials, highlights some of the more recent discoveries concerning the causes (such as stress development due to passivation layer formation), introduces the recently developed techniques for in situ observations of lithiation induced deformations and measurement of stresses, analyses the strategies adopted for addressing the stress-related issues, and raises various issues that still need to be addressed to overcome the stress related problems that are some of the major bottlenecks towards the development of new high-capacity electrode materials for Li-ion batteries.

[1]  Martin Winter,et al.  Tin and tin-based intermetallics as new anode materials for lithium-ion cells , 2001 .

[2]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[3]  R. Hurt,et al.  Vertically Aligned Graphene Layer Arrays from Chromonic Liquid Crystal Precursors , 2011, Advanced materials.

[4]  Kunio Nishimura,et al.  Recent development of carbon materials for Li ion batteries , 2000 .

[5]  H. Gleiter,et al.  Nanostructured materials: basic concepts and microstructure☆ , 2000 .

[6]  J. Dahn,et al.  Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V , 2004 .

[7]  Rajlakshmi Purkayastha,et al.  An integrated 2-D model of a lithium ion battery: the effect of material parameters and morphology on storage particle stress , 2012 .

[8]  Xiaodong Wu,et al.  Cracking causing cyclic instability of LiFePO4 cathode material , 2005 .

[9]  William D. Nix,et al.  Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems , 2000 .

[10]  Kurt Maute,et al.  Numerical modeling of electrochemical-mechanical interactions in lithium polymer batteries , 2009 .

[11]  Kevin W. Eberman,et al.  Colossal Reversible Volume Changes in Lithium Alloys , 2001 .

[12]  Tae-Joon Kim,et al.  Suppression of Cobalt Dissolution from the LiCoO2 Cathodes with Various Metal-Oxide Coatings , 2003 .

[13]  Gao Yan,et al.  On the stress characteristics of graphite anode in commercial pouch lithium-ion battery , 2013 .

[14]  Robert A. Huggins,et al.  All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix , 1981 .

[15]  T. Gustafsson,et al.  Surface chemistry of intermetallic AlSb-anodes for Li-ion batteries , 2007 .

[16]  N. Muniyandi,et al.  Capacity of layered cathode materials for lithium-ion batteries – a theoretical study and experimental evaluation , 2000 .

[17]  Jake Christensen,et al.  Modeling Diffusion-Induced Stress in Li-Ion Cells with Porous Electrodes , 2010 .

[18]  Jiazhao Wang,et al.  An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries , 2005 .

[19]  Michael Holzapfel,et al.  High Rate Capability of Graphite Negative Electrodes for Lithium-Ion Batteries , 2005 .

[20]  K. Chung,et al.  Onset Mechanism of Jahn-Teller Distortion in 4 V LiMn2O4 and Its Suppression by LiM0.05Mn1.95O4 (M = Co , Ni) Coating , 2005 .

[21]  E. Yoo,et al.  Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. , 2009, Nano letters.

[22]  Min Park,et al.  Amorphous silicon thin-film negative electrode prepared by low pressure chemical vapor deposition for lithium-ion batteries , 2003 .

[23]  Yi Cui,et al.  Fracture of crystalline silicon nanopillars during electrochemical lithium insertion , 2012, Proceedings of the National Academy of Sciences.

[24]  Wenzhi Li,et al.  A review of application of carbon nanotubes for lithium ion battery anode material , 2012 .

[25]  T. P. Kumar,et al.  Materials for next-generation lithium batteries , 2008 .

[26]  C. C. Ahn,et al.  Highly Reversible Lithium Storage in Nanostructured Silicon , 2003 .

[27]  V. Khomenko,et al.  Characterization of silicon-and carbon-based composite anodes for lithium-ion batteries , 2007 .

[28]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[29]  Y. Chiang,et al.  Electron microscopic characterization of electrochemically cycled LiCoO2 and Li(Al, Co) O2 battery cathodes , 1999 .

[30]  Zheng,et al.  Effect of turbostratic disorder in graphitic carbon hosts on the intercalation of lithium. , 1995, Physical review. B, Condensed matter.

[31]  M. Broussely,et al.  Li-ion batteries and portable power source prospects for the next 5–10 years , 2004 .

[32]  Rangeet Bhattacharyya,et al.  Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. , 2009, Journal of the American Chemical Society.

[33]  Xingcheng Xiao,et al.  Thickness effects on the lithiation of amorphous silicon thin films , 2011 .

[34]  Vincent Chevrier,et al.  First Principles Model of Amorphous Silicon Lithiation , 2009 .

[35]  Kyung Yoon Chung,et al.  Investigation of Structural Fatigue in Spinel Electrodes Using In Situ Laser Probe Beam Deflection Technique , 2002 .

[36]  Nae-Lih Wu,et al.  A study on the interior microstructures of working Sn particle electrode of Li-ion batteries by in situ X-ray transmission microscopy , 2010 .

[37]  J. W. Cahn,et al.  The Interactions of Composition and Stress in Crystalline Solids , 1999 .

[38]  Xingcheng Xiao,et al.  Stress Contributions to Solution Thermodynamics in Li-Si Alloys , 2012 .

[39]  B. Tu,et al.  Ordered, Nanostructured Tin‐Based Oxides/Carbon Composite as the Negative‐Electrode Material for Lithium‐Ion Batteries , 2004 .

[40]  M. Inaba,et al.  Raman study of layered rock‐salt LiCoO2 and its electrochemical lithium deintercalation , 1997 .

[41]  Yi Cui,et al.  Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. , 2010, ACS nano.

[42]  V. Ramar,et al.  A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: case study of eco-friendly Fe3O4. , 2013, Physical chemistry chemical physics : PCCP.

[43]  R. Holze,et al.  Electrode materials for lithium secondary batteries prepared by sol-gel methods , 2005 .

[44]  Huajian Gao,et al.  Modified Stoney Equation for Patterned Thin Film Electrodes on Substrates in the Presence of Interfacial Sliding , 2012 .

[45]  M. Verbrugge,et al.  Application of Hasselman’s Crack Propagation Model to Insertion Electrodes , 2010 .

[46]  Tanmay K. Bhandakkar,et al.  Cohesive modeling of crack nucleation under diffusion induced stresses in a thin strip: Implications on the critical size for flaw tolerant battery electrodes , 2010 .

[47]  J. Newman,et al.  A mathematical model of stress generation and fracture in lithium manganese oxide , 2006 .

[48]  Prashant N. Kumta,et al.  Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes. , 2010, ACS nano.

[49]  Michael M. Thackeray,et al.  Structural Considerations of Layered and Spinel Lithiated Oxides for Lithium Ion Batteries , 1995 .

[50]  Doron Aurbach,et al.  Design of electrolyte solutions for Li and Li-ion batteries: a review , 2004 .

[51]  Peter G. Bruce,et al.  Lithium‐Ion Intercalation into TiO2‐B Nanowires , 2005 .

[52]  B. Simon,et al.  Carbon materials for lithium-ion rechargeable batteries , 1999 .

[53]  Feng Li,et al.  Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries , 2006 .

[54]  Kristina Edström,et al.  Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries , 2007 .

[55]  Li Wang,et al.  Hydrothermal synthesis of orthorhombic LiMnO2 nano-particles and LiMnO2 nanorods and comparison of their electrochemical performances , 2009 .

[56]  G. Fey,et al.  Tin-filled carbon nanotubes as insertion anode materials for lithium-ion batteries , 2004 .

[57]  Yue Qi,et al.  Elastic softening of amorphous and crystalline Li–Si Phases with increasing Li concentration: A first-principles study , 2010 .

[58]  Daniel P. Abraham,et al.  Real-Time Stress Measurements in Lithium-ion Battery Negative-electrodes , 2012 .

[59]  Y. Shao-horn,et al.  Structural Fatigue in Spinel Electrodes in High Voltage ( 4 V ) Li / Li x Mn2 O 4 Cells , 1999 .

[60]  Yu‐Guo Guo,et al.  Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries , 2010 .

[61]  Xiqian Yu,et al.  Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction , 2012 .

[62]  John Newman,et al.  Stress generation and fracture in lithium insertion materials , 2005 .

[63]  A. J. Bhattacharyya,et al.  Improved lithium cyclability and storage in a multi-sized pore ("differential spacers") mesoporous SnO2. , 2011, Nanoscale.

[64]  Linda F. Nazar,et al.  Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates , 2001 .

[65]  Michael M. Thackeray,et al.  Li{sub x}Cu{sub 6}Sn{sub 5} (0 , 1999 .

[66]  Yi Cui,et al.  Solution-grown silicon nanowires for lithium-ion battery anodes. , 2010, ACS nano.

[67]  H. Guo,et al.  Impact of surface chemistry on grain boundary induced intrinsic stress evolution during polycrystalline thin film growth. , 2009, Physical review letters.

[68]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[69]  Cheol-Woo W. Yi,et al.  An Investigation of LiFePO4/Poly(3,4-ethylenedioxythiophene) Composite Cathode Materials for Lithium-Ion Batteries , 2010 .

[70]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[71]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites , 1997 .

[72]  Venkat Srinivasan,et al.  In Situ Measurements of Stress-Potential Coupling in Lithiated Silicon , 2010 .

[73]  Minoru Inaba,et al.  Surface Film Formation on Graphite Negative Electrode in Lithium-Ion Batteries: AFM Study in an Ethylene Carbonate-Based Solution , 2001 .

[74]  Z. Suo,et al.  Averting cracks caused by insertion reaction in lithium–ion batteries , 2010 .

[75]  Yang‐Kook Sun,et al.  Overcoming Jahn‐Teller Distortion for Spinel Mn Phase , 1999 .

[76]  C. Rao,et al.  Improved lithium cyclability and storage in mesoporous SnO2 electronically wired with very low concentrations (≤1 %) of reduced graphene oxide. , 2012, Chemistry.

[77]  Brian W. Sheldon,et al.  Monitoring Stress in Thin Films During Processing , 2003 .

[78]  Chunsheng Wang,et al.  Strain accommodation and potential hysteresis of LiFePO4 cathodes during lithium ion insertion/extraction , 2011 .

[79]  G. Amatucci,et al.  Particle size and multiphase effects on cycling stability using tin-based materials , 2004 .

[80]  Muhammad A. Qidwai,et al.  The design and application of multifunctional structure-battery materials systems , 2005 .

[81]  T. Yao,et al.  Structural change of the LiMn2O4 spinel structure induced by extraction of lithium , 1996 .

[82]  Mark W. Verbrugge,et al.  Diffusion Induced Stresses and Strain Energy in a Phase-Transforming Spherical Electrode Particle , 2011 .

[83]  U. Varadaraju,et al.  NbSb2 as an anode material for Li-ion batteries , 2006 .

[84]  M. Doeff,et al.  TEM Study of Fracturing in Spherical and Plate-like LiFePO4 Particles , 2008 .

[85]  John P. Sullivan,et al.  In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode , 2010, Science.

[86]  J. Besenhard,et al.  Handbook of Battery Materials , 1998 .

[87]  T. D. Hatchard,et al.  Reaction of Li with Alloy Thin Films Studied by In Situ AFM , 2003 .

[88]  Pierre-Louis Taberna,et al.  High rate capability pure Sn-based nano-architectured electrode assembly for rechargeable lithium batteries , 2009 .

[89]  J. Tarascon,et al.  Towards a Fundamental Understanding of the Improved Electrochemical Performance of Silicon–Carbon Composites , 2007 .

[90]  Itaru Honma,et al.  Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. , 2007, Journal of the American Chemical Society.

[91]  Yang-Tse Cheng,et al.  Crack Pattern Formation in Thin Film Lithium-Ion Battery Electrodes , 2011 .

[92]  V. Kale,et al.  Atomic layer deposited (ALD) SnO2 anodes with exceptional cycleability for Li-ion batteries , 2013 .

[93]  Yang-Kook Sun,et al.  Cycling behaviour of LiCoO2 cathode materials prepared by PAA-assisted sol–gel method for rechargeable lithium batteries , 1999 .

[94]  Hyun-Wook Lee,et al.  Spinel LiMn2O4 nanorods as lithium ion battery cathodes. , 2008, Nano letters.

[95]  N. Koratkar,et al.  Functionally strain-graded nanoscoops for high power Li-ion battery anodes. , 2011, Nano letters.

[96]  Mark W. Verbrugge,et al.  Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation , 2009 .

[97]  John W. Cahn,et al.  Overview no. 41 The interactions of composition and stress in crystalline solids , 1985 .

[98]  Venkat Srinivasan,et al.  In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation , 2010, 1108.0647.

[99]  Hui Wu,et al.  Engineering empty space between Si nanoparticles for lithium-ion battery anodes. , 2012, Nano letters.

[100]  Mark N. Obrovac,et al.  Alloy Design for Lithium-Ion Battery Anodes , 2007 .

[101]  Sun-il Mho,et al.  Electrochemical Analysis of Conductive Polymer-Coated LiFePO4 Nanocrystalline Cathodes with Controlled Morphology , 2011 .

[102]  Bo Lu,et al.  Diffusion induced stress in layered Li-ion battery electrode plates , 2012 .

[103]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[104]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in Li x CoO2 , 1992 .

[105]  J. Tarascon,et al.  CoO2, the end member of the LixCoO2 solid solution , 1996 .

[106]  Byungwoo Park,et al.  Novel LiCoO2 Cathode Material with Al2O3 Coating for a Li Ion Cell , 2000 .

[107]  Mo-hua Yang,et al.  Enhanced Cycle Life of Si Anode for Li-Ion Batteries by Using Modified Elastomeric Binder , 2005 .

[108]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[109]  Pradeep R. Guduru,et al.  In situ measurement of biaxial modulus of Si anode for Li-ion batteries , 2010 .

[110]  Michael M. Thackeray,et al.  Improved capacity retention in rechargeable 4 V lithium/lithium- manganese oxide (spinel) cells , 1994 .

[111]  Y. Yoon,et al.  A TEM study of cycled nano-crystalline HT-LiCoO2 cathodes for rechargeable lithium batteries , 2004 .

[112]  Xiaofeng Qian,et al.  Lithiation-induced embrittlement of multiwalled carbon nanotubes. , 2011, ACS nano.

[113]  Adam T. Timmons,et al.  In Situ AFM Measurements of the Expansion of Nanostructured Sn–Co–C Films Reacting with Lithium , 2009 .

[114]  A. Mcalister The Al-Li (Aluminum-Lithium) system , 1984 .

[115]  R. Li,et al.  Tin Oxide with Controlled Morphology and Crystallinity by Atomic Layer Deposition onto Graphene Nanosheets for Enhanced Lithium Storage , 2012 .

[116]  Yu Zuolong,et al.  The effect of different kinds of nano-carbon conductive additives in lithium ion batteries on the resistance and electrochemical behavior of the LiCoO2 composite cathodes , 2008 .

[117]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[118]  J. Dahn,et al.  Mechanically Alloyed Sn‐Fe(‐C) Powders as Anode Materials for Li‐Ion Batteries: I. The Sn2Fe ‐ C System , 1999 .

[119]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[120]  Michael F Toney,et al.  In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes. , 2012, ACS nano.

[121]  Jihan Kim,et al.  Fabrication of LiMn2O4 thin films by sol–gel method for cathode materials of microbattery , 1998 .

[122]  Fei Gao,et al.  In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. , 2012, Nano letters.

[123]  J. Dahn,et al.  Active/Inactive Nanocomposites as Anodes for Li ‐ Ion Batteries , 1999 .

[124]  Ji‐Guang Zhang,et al.  In situ transmission electron microscopy observation of microstructure and phase evolution in a SnO₂ nanowire during lithium intercalation. , 2011, Nano letters.

[125]  Mark W. Verbrugge,et al.  Stress Mitigation during the Lithiation of Patterned Amorphous Si Islands , 2011 .

[126]  Z. Suo,et al.  Sandwich-lithiation and longitudinal crack in amorphous silicon coated on carbon nanofibers. , 2012, ACS nano.

[127]  W. Shyy,et al.  Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles , 2007 .

[128]  Guoxian Liang,et al.  A soft chemistry approach to coating of LiFePO4 with a conducting polymer. , 2011, Angewandte Chemie.

[129]  M. Verbrugge,et al.  Diffusion-Induced Stress, Interfacial Charge Transfer, and Criteria for Avoiding Crack Initiation of Electrode Particles , 2010 .

[130]  Kenji Fukuda,et al.  Carbon-Coated Si as a Lithium-Ion Battery Anode Material , 2002 .

[131]  J. M. Rosolen,et al.  Stress in Carbon Film Electrodes during Li + Electrochemical Intercalation , 1996 .

[132]  V. Pol,et al.  Spherical carbon particles and carbon nanotubes prepared by autogenic reactions: Evaluation as anodes in lithium electrochemical cells , 2011 .

[133]  A. Mukhopadhyay,et al.  Consolidation–microstructure–property relationships in bulk nanoceramics and ceramic nanocomposites: a review , 2007 .

[134]  Weixiang Chen,et al.  The nanocomposites of carbon nanotube with Sb and SnSb0.5 as Li-ion battery anodes , 2003 .

[135]  Bruno Scrosati,et al.  Nanomaterial-based Li-ion battery electrodes , 2001 .

[136]  Libao Chen,et al.  An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries , 2009 .

[137]  S. Dou,et al.  Electrochemical lithiation and de-lithiation of MWNT-Sn/SnNi nanocomposites , 2005 .

[138]  C. Y. Wen,et al.  NONCATALYTIC HETEROGENEOUS SOLID-FLUID REACTION MODELS , 1968 .

[139]  M. Thackeray,et al.  LixCu6Sn5 (0 < x < 13): An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries. , 2010 .

[140]  Martin Winter,et al.  Advances in battery technology: rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[141]  M. Inaba,et al.  Irreversible capacity of electrodeposited Sn thin film anode , 2005 .

[142]  Stephen J. Harris,et al.  In Situ Observation of Strains during Lithiation of a Graphite Electrode , 2010 .

[143]  Prashant N. Kumta,et al.  Interfacial Properties of the a-Si ∕ Cu :Active–Inactive Thin-Film Anode System for Lithium-Ion Batteries , 2006 .

[144]  C. V. D. Marel,et al.  The phase diagram of the system lithium-silicon , 1985 .

[145]  Z. Wen,et al.  Preparation and electrochemical characterization of tin/graphite/silver composite as anode materials for lithium-ion batteries , 2008 .

[146]  Spark plasma sintered/synthesized dense and nanostructured materials for solid-state Li-ion batteries: Overview and perspective , 2014 .

[147]  M. Verbrugge,et al.  Automotive Traction Battery Needs and the Influence of Mechanical Degradation of Insertion-electrode Particles , 2009, ECS Transactions.

[148]  Xuejie Huang,et al.  Nano-alloy anode for lithium ion batteries , 2002 .

[149]  Amartya Mukhopadhyay,et al.  Thin film graphite electrodes with low stress generation during Li-intercalation , 2011 .

[150]  Daniela Zane,et al.  A morphological study of SEI film on graphite electrodes , 2001 .

[151]  Jian Yu Huang,et al.  Self-limiting lithiation in silicon nanowires. , 2012, ACS nano.

[152]  Wei Wang,et al.  Vertically aligned silicon/carbon nanotube (VASCNT) arrays: Hierarchical anodes for lithium-ion battery , 2011 .

[153]  S. Hackney,et al.  Cracking in Si-based anodes for Li-ion batteries , 2005 .

[154]  Ranganath Teki,et al.  Nanostructured silicon anodes for lithium ion rechargeable batteries. , 2009, Small.

[155]  Zonghai Chen,et al.  Comparison of PVDF and PVDF-TFE-P as Binders for Electrode Materials Showing Large Volume Changes in Lithium-Ion Batteries , 2003 .

[156]  L. Freund,et al.  Origin of compressive residual stress in polycrystalline thin films. , 2002, Physical review letters.

[157]  G. Stoney The Tension of Metallic Films Deposited by Electrolysis , 1909 .

[158]  J. Yang,et al.  Ultrafine Sn and SnSb0.14 Powders for Lithium Storage Matrices in Lithium‐Ion Batteries , 1999 .

[159]  Robert H. Hurt,et al.  Engineering of Graphene Layer Orientation to Attain High Rate Capability and Anisotropic Properties in Li‐Ion Battery Electrodes , 2013 .

[160]  Huajian Gao,et al.  Improved cycling stability of silicon thin film electrodes through patterning for high energy density lithium batteries , 2011 .

[161]  Young-Il Jang,et al.  TEM Study of Electrochemical Cycling‐Induced Damage and Disorder in LiCoO2 Cathodes for Rechargeable Lithium Batteries , 1999 .

[162]  T. Brousse,et al.  Aluminum negative electrode in lithium ion batteries , 2001 .

[163]  M. Verbrugge,et al.  Diffusion Mediated Lithiation Stresses in Si Thin Film Electrodes , 2012 .

[164]  Yi Cui,et al.  Silicon–Carbon Nanotube Coaxial Sponge as Li‐Ion Anodes with High Areal Capacity , 2011 .

[165]  J. Dahn,et al.  Studies of LiCoO2 Coated with Metal Oxides , 2003 .

[166]  Min Park,et al.  Amorphous silicon anode for lithium-ion rechargeable batteries , 2003 .

[167]  Yang-Tse Cheng,et al.  Mesopores inside electrode particles can change the Li-ion transport mechanism and diffusion-induced stress , 2010 .

[168]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[169]  J. Jumas,et al.  Electrochemical reaction of lithium with the CoSb3 skutterudite , 1999 .

[170]  B. Wei,et al.  Silicon Thin Films as Anodes for High‐Performance Lithium‐Ion Batteries with Effective Stress Relaxation , 2012 .

[171]  Peng Lu,et al.  The Origin of Stress in the Solid Electrolyte Interphase on Carbon Electrodes for Li Ion Batteries , 2014 .

[172]  Gerbrand Ceder,et al.  First-principles investigation of phase stability in Li x CoO 2 , 1998 .

[173]  E. Kaxiras,et al.  Reactive flow in silicon electrodes assisted by the insertion of lithium. , 2012, Nano letters.

[174]  Martin Winter,et al.  Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? , 1997 .

[175]  Y. Park,et al.  Electrochemical properties of LiMn2O4 thin films: suggestion of factors for excellent rechargeability , 2000 .

[176]  Xuejie Huang,et al.  Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries , 2006 .

[177]  Xiaofen Li,et al.  Progress of electrochemical capacitor electrode materials: A review , 2009 .

[178]  Ying Wang,et al.  Electrochemical Reactions of Lithium with Transition Metal Nitride Electrodes , 2004 .

[179]  John T. Vaughey,et al.  Li x Cu6Sn5 ( 0 < x < 13 ) : An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries , 1999 .

[180]  H. X. Yang,et al.  Cycleable graphite/FeSi6 alloy composite as a high capacity anode material for Li-ion batteries , 2008 .

[181]  B. Scrosati,et al.  An electrochemical investigation of a Sn-Co-C ternary alloy as a negative electrode in Li-ion batteries , 2007 .

[182]  Yue Qi,et al.  Threefold Increase in the Young’s Modulus of Graphite Negative Electrode during Lithium Intercalation , 2010 .

[183]  M. Thackeray,et al.  Copper-tin anodes for rechargeable lithium batteries : an example of the matrix effect in an intermetallic system. , 1998 .

[184]  A. Manthiram,et al.  Factors Influencing the Capacity Fade of Spinel Lithium Manganese Oxides , 2004 .

[185]  Sun-Yuan Tsay,et al.  Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol–gel route , 2004 .

[186]  W. Craig Carter,et al.  Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries , 2005 .

[187]  Jean-Marie Tarascon,et al.  Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn2-xO4-zFz solid solution , 2001 .

[188]  T. Kyotani,et al.  Fast and reversible lithium storage in a wrinkled structure formed from Si nanoparticles during lithiation/delithiation cycling , 2013 .

[189]  Hsiao-Ying Shadow Huang,et al.  Dislocation Based Stress Developments in Lithium-Ion Batteries , 2012 .

[190]  Wei Shyy,et al.  Intercalation-Induced Stress and Heat Generation within Single Lithium-Ion Battery Cathode Particles , 2008 .

[191]  J. P. Dempsey,et al.  Stable crack growth in nanostructured Li-batteries , 2005 .

[192]  Martin Winter,et al.  Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes , 1995 .

[193]  Petr Novák,et al.  SEI film formation on highly crystalline graphitic materials in lithium-ion batteries , 2006 .

[194]  T. Osaka,et al.  In Situ Stress Transition Observations of Electrodeposited Sn-Based Anode Materials for Lithium-Ion Secondary Batteries , 2007 .

[195]  Michael M. Thackeray,et al.  Lithium reactions with intermetallic-compound electrodes , 2002 .

[196]  Thomas J. Richardson,et al.  Electron Microscopy Study of the LiFePO4 to FePO4 Phase Transition , 2006 .

[197]  Jaephil Cho,et al.  LiCoO2 Cathode Material That Does Not Show a Phase Transition from Hexagonal to Monoclinic Phase , 2001 .

[198]  M. Dresselhaus,et al.  Alternative energy technologies , 2001, Nature.

[199]  Jaephil Cho,et al.  One-dimensional (1D) nanostructured and nanocomposited LiFePO4: its perspective advantages for cathode materials of lithium ion batteries. , 2011, Physical chemistry chemical physics : PCCP.

[200]  Doron Aurbach,et al.  In Situ AFM Imaging of Surface Phenomena on Composite Graphite Electrodes during Lithium Insertion , 2002 .

[201]  Jaephil Cho,et al.  Zero-Strain Intercalation Cathode for Rechargeable Li-Ion Cell , 2001 .

[202]  B. Fultz,et al.  The Character of Dislocations in LiCoO2 , 2002 .

[203]  D. P. DiVincenzo,et al.  Effect of in-plane density on the structural and elastic properties of graphite intercalation compounds , 1983 .

[204]  J. Yamaki,et al.  Synthesis of High-Voltage (4.5 V) Cycling Doped LiCoO2 for Use in Lithium Rechargeable Cells , 2003 .

[205]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[206]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[207]  G. Cao,et al.  Studies of cycleability of LiMn2O4 and LiLa0.01Mn1.99O4 as cathode materials for Li-ion battery , 2006 .

[208]  Jian Yu Huang,et al.  In situ TEM electrochemistry of anode materials in lithium ion batteries , 2011 .

[209]  Lisa C. Klein,et al.  Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries , 1996 .

[210]  W. Craig Carter,et al.  “Electrochemical Shock” of Intercalation Electrodes: A Fracture Mechanics Analysis , 2010 .

[211]  J. Vetter,et al.  In situ atomic force microscopy study of dimensional changes during Li + ion intercalation/de-intercalation in highly oriented pyrolytic graphite , 2005 .

[212]  Amartya Mukhopadhyay,et al.  Stress development due to surface processes in graphite electrodes for Li-ion batteries: A first report , 2012 .

[213]  R. Holze,et al.  Cathode materials for lithium ion batteries prepared by sol-gel methods , 2004 .

[214]  John P. Dempsey,et al.  Design criteria for nanostructured Li-ion batteries , 2007 .

[215]  Jian Yu Huang,et al.  Size-dependent fracture of silicon nanoparticles during lithiation. , 2011, ACS nano.