Probabilistic Reversible Automata and Quantum Automata

To study relationship between quantum finite automata and probabilistic finite automata, we introduce a notion of probabilistic reversible automata (PRA, or doubly stochastic automata). We find that there is a strong relationship between different possible models of PRA and corresponding models of quantum finite automata. We also propose a classification of reversible finite 1-way automata.

[1]  John Watrous,et al.  On the power of quantum finite state automata , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[2]  Azaria Paz,et al.  Probabilistic automata , 2003 .

[3]  Charles M. Grinstead,et al.  Introduction to probability , 1999, Statistics for the Behavioural Sciences.

[4]  Ashwin Nayak,et al.  Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[5]  John N. Tsitsiklis,et al.  Introduction to Probability , 2002 .

[6]  J. Hartmanis Algebraic structure theory of sequential machines (Prentice-Hall international series in applied mathematics) , 1966 .

[7]  Alex Brodsky,et al.  Characterizations of 1-Way Quantum Finite Automata , 2002, SIAM J. Comput..

[8]  Andris Ambainis,et al.  1-way quantum finite automata: strengths, weaknesses and generalizations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[9]  Andris Ambainis,et al.  On the Class of Languages Recognizable by 1-Way Quantum Finite Automata , 2001, STACS.

[10]  J. Hartmanis,et al.  Algebraic Structure Theory Of Sequential Machines , 1966 .

[11]  Andris Ambainis,et al.  Probabilities to Accept Languages by Quantum Finite Automata , 1999, COCOON.

[12]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[13]  James P. Crutchfield,et al.  Quantum automata and quantum grammars , 2000, Theor. Comput. Sci..