On the Preliminary Design of Multiple Gravity-Assist Trajectories

In this paper the preliminary design of multiple gravity-assist trajectories is formulated as a global optimization problem. An analysis of the structure of the solution space reveals a strong multimodality, which is strictly dependent on the complexity of the model. On the other hand it is shown how an oversimplification could prevent finding potentially interesting solutions. A trajectory model, which represents a compromise between model completeness and optimization problem complexity is then presented. The exploration of the resulting solution space is performed through a novel global search approach, which hybridizes an evolutionary based algorithm with a systematic branching strategy. This approach allows an efficient exploration of complex solution domains by automatically balancing local convergence and global search. A number of difficult multiple gravity-assist trajectory design cases demonstrates the effectiveness of the proposed methodology.

[1]  P. A. Penzo,et al.  Voyager mission description , 1977 .

[2]  Yanping Guo,et al.  Baseline design of new horizons mission to Pluto and the Kuiper belt , 2006 .

[3]  James M. Longuski,et al.  Trajectory options to Pluto via gravity assists from Venus, Mars, and Jupiter , 1996 .

[4]  James M. Longuski,et al.  Automated design of gravity-assist trajectories to Mars and the outer planets , 1991 .

[5]  D. L. Shirley Mariner 10 mission analysis - Application of a black art. [trajectory selection for data acquisition optimization , 1975 .

[6]  Nathan J. Strange,et al.  Graphical Method for Gravity-Assist Trajectory Design , 2002 .

[7]  P. A. Penzo,et al.  Satellite tour design for the Galileo mission , 1983 .

[8]  Stefano Campagnola,et al.  END-TO-END MISSION ANALYSIS FOR A LOW-COST, TWO- SPACECRAFT MISSION TO EUROPA , 2009 .

[9]  Massimiliano Vasile,et al.  DESIGN OF EARTH-MARS TRANSFER TRAJECTORIES USING EVOLUTION-BRANCHING TECHNIQUE , 2003 .

[10]  R. Battin An introduction to the mathematics and methods of astrodynamics , 1987 .

[11]  Massimiliano Vasile,et al.  Design of Earth–Mars transfer trajectories using evolutionary-branching technique☆ , 2003 .

[12]  James M. Longuski,et al.  Trajectory Options to Pluto via Gravity Assists from Venus, Mars, and Jupiter , 1997 .

[13]  Jean-Pierre Lebreton,et al.  The Cassini/Huygens Mission to the Saturnian System , 1999 .

[14]  Anastassios E. Petropoulos,et al.  Trajectories to Jupiter via Gravity Assists from Venus, Earth, and Mars , 1998 .

[15]  John W. Hartmann,et al.  OPTIMAL INTERPLANETARY SPACECRAFT TRAJECTORIES VIA A PARETO GENETIC ALGORITHM , 1998 .

[16]  Damon Landau,et al.  PRELIMINARY ANALYSIS AND DESIGN OF POWERED EARTH - MARS CYCLING TRAJECTORIES , 2002 .

[17]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[18]  Massimiliano Vasile,et al.  Options for a mission to Pluto and beyond , 2003 .

[19]  Ronda de Poniente,et al.  Don Quijote : An ESA mission for the assessment of the NEO threat , 2004 .

[20]  Massimiliano Vasile A global approach to optimal space trajectory design , 2003 .

[21]  Massimiliano Vasile,et al.  Preliminary analysis of interplanetary trajectories with aerogravity and gravity assist manoeuvres , 2003 .

[22]  Nathan J. Strange,et al.  Automated Design of the Europa Orbiter Tour , 2000 .