Structure of boron nitride nanotubes: tube closing versus chirality

Abstract The structure of boron nitride nanotubes is investigated using a generalized tight-binding molecular dynamics method. It is shown that dynamic relaxation results in a wave-like or `rippled' surface in which the B atoms rotate inward and the N atoms move outward, reminiscent of the surface relaxation of the III–V semiconductors. More importantly, the three different morphologies of the tube closing with flat, conical and amorphous ends, as observed in experiments, are shown to be directly related to the tube chiralities.

[1]  G. Gobeli,et al.  Chapter 6 Low Energy Electron Diffraction Studies , 1966 .

[2]  A. M. Rao,et al.  Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes , 1997, Science.

[3]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[4]  C. Lieber,et al.  Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.

[5]  P. Bernier,et al.  Elastic Properties of C and B x C y N z Composite Nanotubes , 1998 .

[6]  Fujita,et al.  Electronic structure of graphene tubules based on C60. , 1992, Physical review. B, Condensed matter.

[7]  Benedict,et al.  Pure carbon nanoscale devices: Nanotube heterojunctions. , 1996, Physical review letters.

[8]  Steven G. Louie,et al.  Boron Nitride Nanotubes , 1995, Science.

[9]  Madhu Menon,et al.  Nonorthogonal tight-binding molecular-dynamics scheme for silicon with improved transferability , 1997 .

[10]  White,et al.  Are fullerene tubules metallic? , 1992, Physical review letters.

[11]  Madhu Menon,et al.  Structural and vibrational properties of fullerenes and nanotubes in a nonorthogonal tight‐binding scheme , 1996 .

[12]  Sawada,et al.  New one-dimensional conductors: Graphitic microtubules. , 1992, Physical review letters.

[13]  P. Gleize,et al.  Growth of tubular boron nitride filaments , 1994, Journal of Materials Science.

[14]  Cohen,et al.  Theory of graphitic boron nitride nanotubes. , 1994, Physical review. B, Condensed matter.

[15]  R. T. Sanderson Chemical Bonds and Bond Energy , 1976 .

[16]  F. Willaime,et al.  Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. , 1996, Physical review letters.

[17]  Steven G. Louie,et al.  Stability and Band Gap Constancy of Boron Nitride Nanotubes , 1994 .

[18]  K. Subbaswamy,et al.  First-principles molecular-dynamics study of carbon clusters. , 1993, Physical review. B, Condensed matter.

[19]  G. Gobeli,et al.  Low‐Energy Electron‐Diffraction Study of the Cleaved (110) Surfaces of InSb, InAs, GaAs, and GaSb , 1964 .

[20]  A. Beer,et al.  Physics of III-V compounds , 1966 .

[21]  J. Burdett,et al.  Electronic structure and properties of solids , 1996 .

[22]  R. Car,et al.  Frustration effects and microscopic growth mechanisms for BN nanotubes , 1998 .

[23]  S. Herreyre,et al.  Characterization of tubular boron nitride filaments , 1994 .

[24]  Dunlap,et al.  Relating carbon tubules. , 1994, Physical review. B, Condensed matter.