Kernel Ho-Kashyap classifier with generalization control
暂无分享,去创建一个
[1] L. Mirsky,et al. The Theory of Matrices , 1961, The Mathematical Gazette.
[2] R. L. Kashyap,et al. An Algorithm for Linear Inequalities and its Applications , 1965, IEEE Trans. Electron. Comput..
[3] Y. Ho,et al. A Class of Iterative Procedures for Linear Inequalities , 1966 .
[4] Peter Lancaster,et al. The theory of matrices , 1969 .
[5] Richard O. Duda,et al. Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.
[6] Julius T. Tou,et al. Pattern Recognition Principles , 1974 .
[7] Bernhard E. Boser,et al. A training algorithm for optimal margin classifiers , 1992, COLT '92.
[8] Brian D. Ripley,et al. Pattern Recognition and Neural Networks , 1996 .
[9] Kenneth Rose,et al. A global optimization technique for statistical classifier design , 1996, IEEE Trans. Signal Process..
[10] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[11] Bernhard Schölkopf,et al. Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.
[12] Simon Haykin,et al. Neural Networks: A Comprehensive Foundation , 1998 .
[13] B. Scholkopf,et al. Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).
[14] Vladimir Vapnik,et al. An overview of statistical learning theory , 1999, IEEE Trans. Neural Networks.
[15] Gunnar Rätsch,et al. Input space versus feature space in kernel-based methods , 1999, IEEE Trans. Neural Networks.
[16] Jacek M. Leski,et al. Fuzzy and Neuro-Fuzzy Intelligent Systems , 2000, Studies in Fuzziness and Soft Computing.
[17] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[18] G. Baudat,et al. Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.
[19] J. Nazuno. Haykin, Simon. Neural networks: A comprehensive foundation, Prentice Hall, Inc. Segunda Edición, 1999 , 2000 .
[20] Gunnar Rätsch,et al. An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.
[21] George Eastman House,et al. Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .
[22] Jacek M. Leski,et al. Ho-Kashyap classifier with generalization control , 2003, Pattern Recognit. Lett..
[23] J. Wade Davis,et al. Statistical Pattern Recognition , 2003, Technometrics.
[24] Jacek M. Łȩski,et al. Ho--Kashyap classifier with generalization control , 2003 .
[25] Jacek Łęski,et al. A fuzzy if-then rule-based nonlinear classifier , 2003 .
[26] Gunnar Rätsch,et al. Soft Margins for AdaBoost , 2001, Machine Learning.
[27] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.