Curvature-bounded guided subdivision: Biquartics vs bicubics

Abstract A sequence of C 2 -connected nested subdivision rings of polynomial degree bi-4 can be made to follow a guide surface and completed by a tiny finite cap to serve as a refinable surface representation for design and analysis (Karciauskas and Peters, 2018) . This raises the question, both of academic and practical interest, how much and at what cost to surface quality can the efficiency be improved by lowering the number of rings and/or the polynomial degree. In a systematic exploration, a new bi-4 construction is discovered that requires half the number of surface rings but matches the quality of (Karciauskas and Peters, 2018). For this surface quality, numerous trials indicate that this number of surface rings is minimal and that the degree cannot be reduced. Bi-3 constructions with a similar layout have inferior highlight line distributions – although the best of the new bi-3 constructions visibly improve on Catmull–Clark subdivision and its curvature-bounded variants.

[1]  Kestutis Karÿ Improved shape for multi-surface blends , 2016 .

[2]  M. A. Sabin,et al.  Cubic Recursive Division With Bounded Curvature , 1991, Curves and Surfaces.

[3]  Jörg Peters,et al.  Rapidly contracting subdivision yields finite, effectively C2 surfaces , 2018, Comput. Graph..

[4]  Jörg Peters,et al.  A New Class of Guided C2 Subdivision Surfaces Combining Good Shape with Nested Refinement , 2018, Comput. Graph. Forum.

[5]  M. Sabin,et al.  NURBS with extraordinary points: high-degree, non-uniform, rational subdivision schemes , 2009, SIGGRAPH 2009.

[6]  D.W. Fellner,et al.  Isogeometric shell analysis with NURBS compatible subdivision surfaces , 2016, Appl. Math. Comput..

[7]  W. Boehm,et al.  Bezier and B-Spline Techniques , 2002 .

[8]  Jörg Peters,et al.  Refinable bi-quartics for design and analysis , 2018, Comput. Aided Des..

[9]  Xiao Xiao,et al.  Isogeometric shape optimisation of shell structures using multiresolution subdivision surfaces , 2016 .

[10]  Yifan Chen,et al.  Highlight-line algorithm for realtime surface-quality assessment , 1994, Comput. Aided Des..

[11]  Charles T. Loop,et al.  G2 Tensor Product Splines over Extraordinary Vertices , 2008, Comput. Graph. Forum.

[12]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[13]  Jörg Peters,et al.  Eurographics Symposium on Geometry Processing 2015 Can Bi-cubic Surfaces Be Class A? , 2022 .

[14]  Jörg Peters,et al.  Improved shape for refinable surfaces with singularly parameterized irregularities , 2017, Comput. Aided Des..

[15]  Jörg Peters,et al.  Subdivision Surfaces , 2002, Handbook of Computer Aided Geometric Design.

[16]  Neil A. Dodgson,et al.  Tuning Subdivision by Minimising Gaussian Curvature Variation Near Extraordinary Vertices , 2006, Comput. Graph. Forum.

[17]  Thomas J. Cashman,et al.  NURBS-compatible subdivision surfaces , 2011 .

[18]  Jörg Peters,et al.  Adjustable speed surface subdivision , 2009, Comput. Aided Geom. Des..

[19]  Jörg Peters,et al.  Concentric tessellation maps and curvature continuous guided surfaces , 2007, Comput. Aided Geom. Des..

[20]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[21]  Ahmad H. Nasri,et al.  Tuned Ternary Quad Subdivision , 2006, GMP.

[22]  Neil A. Dodgson,et al.  Curvature behaviours at extraordinary points of subdivision surfaces , 2003, Comput. Aided Des..