Algorithms for geodesics

[1]  Charles F. F. Karney Geodesics on an ellipsoid of revolution , 2011, 1102.1215.

[2]  R. Rapp,et al.  Geometric Geodesy Part I , 1991 .

[3]  Charles F. F. Karney,et al.  Über die Berechnung der geographischen Längen und Breiten aus geodätischen Vermessungen , 1825, 0908.1823.

[4]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[5]  Carl Friedrich Gauss Disquisitiones generales circa superficies curvas , 1981 .

[6]  Roy Williams Gnomonic Projection of the Surface of an Ellipsoid , 1997, Journal of Navigation.

[7]  T. Vincenty DIRECT AND INVERSE SOLUTIONS OF GEODESICS ON THE ELLIPSOID WITH APPLICATION OF NESTED EQUATIONS , 1975 .

[8]  E. Beltrami,et al.  Risoluzione del problema: Riportare i punti di una superficie sopra un piano in modo che le linee geodetiche vengano rappresentate da linee rette , 1865 .

[9]  Charles F. F. Karney,et al.  F.W. Bessel (1825): The calculation of longitude and latitude from geodesic measurements , 2009, 0908.1824.

[10]  H. Vermeille,et al.  Direct transformation from geocentric coordinates to geodetic coordinates , 2002 .

[11]  L. M. Bugayevskiy,et al.  Map Projections: A Reference Manual , 1995 .

[12]  C. W. Clenshaw A note on the summation of Chebyshev series , 1955 .

[13]  J. Danielsen,et al.  THE AREA UNDER THE GEODESIC , 1989 .

[14]  B. Bowring THE CENTRAL PROJECTION OF THE SPHEROID AND SURFACE LINES , 1997 .

[15]  Masayuki Noro,et al.  A Computer Algebra System , 2022 .

[16]  C. Jacobi,et al.  Über die Curve, welche alle von einem Punkte ausgehenden geodätischen Linien eines Rotationsellipsoides berührt , 2013 .