Guaranteeing the topology of an implicit surface polygonization for interactive modeling

Morse theory shows how the topology of an implicit surface is affected by its function's critical points, whereas catastrophe theory shows how these critical points behave as the function's parameters change. Interval analysis finds the critical points, and they can also be tracked efficiently during parameter changes. Changes in the function value at these critical points cause changes in the topology. Techniques for modifying the polygonization to accommodate such changes in topology are given. These techniques are robust enough to guarantee the topology of an implicit surface polygonization, and are efficient enough to maintain this guarantee during interactive modeling. The impact of this work is a topologically-guaranteed polygonization technique, and the ability to directly and accurately manipulate polygonized implicit surfaces in real time.

[1]  Pat Hanrahan,et al.  Illumination from curved reflectors , 1992, SIGGRAPH.

[2]  Yannick L. Kergosien Generic sign systems in medical imaging , 1991, IEEE Computer Graphics and Applications.

[3]  Mathieu Desbrun,et al.  Adaptive Sampling of Implicit Surfaces for Interactive Modelling and Animation , 1995, Comput. Graph. Forum.

[4]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[5]  Tunc Geveci,et al.  Advanced Calculus , 2014, Nature.

[6]  Claude Brezinski,et al.  Generative modeling for computer graphics and CAD , 1993 .

[7]  David H. Laidlaw,et al.  Cellular texture generation , 1995, SIGGRAPH.

[8]  Thomas W. Sederberg,et al.  A physically based approach to 2–D shape blending , 1992, SIGGRAPH.

[9]  James F. Blinn,et al.  A Generalization of Algebraic Surface Drawing , 1982, TOGS.

[10]  John Hart Morse Theory for Computer Graphics , 2007 .

[11]  Robert Gilmore,et al.  Catastrophe Theory for Scientists and Engineers , 1981 .

[12]  Hans-Christian Rodrian,et al.  Dynamic Triangulation of Animated Skeleton-Based Implicit Surfaces , 1996 .

[13]  K. Cheng Using plane vector fields to obtain all the intersection curves of two general surfaces , 1989 .

[14]  Barton T. Stander,et al.  Polygonizing implicit surfaces with guaranteed topology , 1997 .

[15]  Don P. Mitchell,et al.  Three Applications of Interval Analysis in Computer Graphics , 2000 .

[16]  Dietmar Saupe,et al.  Interactive Visualization of Implicit Surfaces with Singularities , 1997, Comput. Graph. Forum.

[17]  Jules Bloomenthal,et al.  Polygonization of implicit surfaces , 1988, Comput. Aided Geom. Des..

[18]  E. Hansen,et al.  An interval Newton method , 1983 .

[19]  Richard Szeliski,et al.  Surface modeling with oriented particle systems , 1992, SIGGRAPH.

[20]  Lambertus Hesselink,et al.  The topology of symmetric, second-order tensor fields , 1994, VIS '94.

[21]  Luiz Velho,et al.  Physically-based methods for polygonization of implicit surfaces , 1992 .

[22]  Brian Wyvill,et al.  Interactive techniques for implicit modeling , 1990, I3D '90.

[23]  Jon G. Rokne,et al.  Computer Methods for the Range of Functions , 1984 .

[24]  Brian Wyvill,et al.  Shrinkwrap : an adaptive algorithm for polygonizing an implicit surface , 1993 .

[25]  Greg Turk,et al.  Generating textures on arbitrary surfaces using reaction-diffusion , 1991, SIGGRAPH.

[26]  Kevin G. Suffern,et al.  Interval methods in computer graphics , 1991, Comput. Graph..

[27]  NingPaul,et al.  An Evaluation of Implicit Surface Tilers , 1993 .

[28]  Paul S. Heckbert,et al.  Using particles to sample and control implicit surfaces , 1994, SIGGRAPH.

[29]  Lambertus Hesselink,et al.  Visualizing vector field topology in fluid flows , 1991, IEEE Computer Graphics and Applications.

[30]  Eldon Hansen,et al.  A globally convergent interval method for computing and bounding real roots , 1978 .

[31]  R. Smullyan ANNALS OF MATHEMATICS STUDIES , 1961 .

[32]  Paul Ning,et al.  An evaluation of implicit surface tilers , 1993, IEEE Computer Graphics and Applications.

[33]  Tosiyasu L. Kunii,et al.  Surface coding based on Morse theory , 1991, IEEE Computer Graphics and Applications.

[34]  Devendra Kalra,et al.  Guaranteed ray intersections with implicit surfaces , 1989, SIGGRAPH.

[35]  Alexei Sourin,et al.  Function representation in geometric modeling: concepts, implementation and applications , 1995, The Visual Computer.

[36]  C.W.A.M. van Overveld,et al.  How to shrinkwrap a critical point : an algorithm for the adaptive triangulation of iso-surfaces with arbitrary topology , 1996 .

[37]  Andrea Bottino,et al.  How to Shrinkwrap through a Critical Point : an Algorithm for the Adaptive Triangulation of Iso-Surfaces with Arbitrary Topology , 1996 .

[38]  Alan Norton,et al.  Generation and display of geometric fractals in 3-D , 1982, SIGGRAPH.

[39]  John M. Snyder,et al.  Generative Modeling for Computer Graphics and Cad: Symbolic Shape Design Using Interval Analysis , 1992 .