Mathematics of Photoacoustic and Thermoacoustic Tomography

This is the manuscript of the chapter for a planned Handbook of Mathematical Methods in Imaging that surveys the mathematical models, problems, and algorithms of the Thermoacoustic (TAT) and Photoacoustic (PAT) Tomography. TAT and PAT represent probably the most developed of the several novel ``hybrid'' methods of medical imaging. These new modalities combine different physical types of waves (electromagnetic and acoustic in case of TAT and PAT) in such a way that the resolution and contrast of the resulting method are much higher than those achievable using only acoustic or electromagnetic measurements.

[1]  Rakesh,et al.  The spherical mean value operator with centers on a sphere , 2007 .

[2]  S. K. Patch,et al.  Thermoacoustic tomography: numerical results , 2007, SPIE BiOS.

[3]  S. Helgason Groups and geometric analysis , 1984 .

[4]  Margaret Cheney,et al.  A Mathematical Tutorial on Synthetic Aperture Radar , 2001, SIAM Rev..

[5]  Lihong V. Wang,et al.  Biomedical Optics: Principles and Imaging , 2007 .

[6]  Peter Kuchment,et al.  Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed , 2007, 0706.0598.

[7]  Habib Ammari,et al.  An Introduction to Mathematics of Emerging Biomedical Imaging , 2008 .

[8]  P. Kuchment,et al.  On local tomography , 1995 .

[9]  Markus Haltmeier,et al.  Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector. , 2007, Applied optics.

[10]  Linh V. Nguyen,et al.  Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media , 2008 .

[11]  Lihong V Wang,et al.  Universal back-projection algorithm for photoacoustic computed tomography , 2005, SPIE BiOS.

[12]  Paul C. Beard,et al.  Photoacoustic tomography with a limited-aperture planar sensor and a reverberant cavity , 2007 .

[13]  P. Burgholzer,et al.  Photoacoustic tomography using a fiber based Fabry-Perot interferometer as an integrating line detector and image reconstruction by model-based time reversal method , 2007, European Conference on Biomedical Optics.

[14]  R. Strichartz A Guide to Distribution Theory and Fourier Transforms , 1994 .

[15]  Lihong V. Wang,et al.  Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo , 2007, SPIE BiOS.

[16]  D. V. Sushko,et al.  A parametrix for the problem of optical-acoustic tomography , 2002 .

[17]  Eric Todd Quinto,et al.  Singularities of the X-ray transform and limited data tomography , 1993 .

[18]  Dustin Steinhauer A Uniqueness Theorem for Thermoacoustic Tomography in the Case of Limited Boundary Data , 2009 .

[19]  Eric Todd Quinto,et al.  Injectivity Sets for the Radon Transform over Circles and Complete Systems of Radial Functions , 1996 .

[20]  E. T. Quinto,et al.  An Introduction to X-ray tomography and Radon Transforms , 2006 .

[21]  Habib Ammari,et al.  Quantitative Photo-Acoustic Imaging of Small Absorbers , 2009 .

[22]  T. Bowen Radiation-Induced Thermoacoustic Soft Tissue Imaging , 1981 .

[23]  W. Marsden I and J , 2012 .

[24]  Markus Haltmeier,et al.  Experimental evaluation of reconstruction algorithms for limited view photoacoustic tomography with line detectors , 2007 .

[25]  G. Beylkin The inversion problem and applications of the generalized radon transform , 1984 .

[26]  Dustin Steinhauer A Reconstruction Procedure for Thermoacoustic Tomography in the Case of Limited Boundary Data , 2009 .

[27]  Huabei Jiang,et al.  Simultaneous reconstruction of acoustic and optical properties of heterogeneous media by quantitative photoacoustic tomography. , 2006, Optics express.

[28]  E. T. Quinto,et al.  Local Tomographic Methods in Sonar , 2000 .

[29]  L. Andersson On the determination of a function from spherical averages , 1988 .

[30]  A. Tam Applications of photoacoustic sensing techniques , 1986 .

[31]  Stephen J. Norton,et al.  Reconstruction of a two‐dimensional reflecting medium over a circular domain: Exact solution , 1980 .

[32]  Gunther Uhlmann,et al.  Microlocal techniques in integral geometry , 1990 .

[33]  Otmar Scherzer,et al.  Thermoacoustic tomography using a fiber-based Fabry-Perot interferometer as an integrating line detector , 2006, SPIE BiOS.

[34]  Linh V. Nguyen,et al.  Range conditions for a spherical mean transform and global extendibility of solutions of the darboux equation , 2010 .

[35]  Michael V. Klibanov,et al.  The Quasi-Reversibility Method for Thermoacoustic Tomography in a Heterogeneous Medium , 2007, SIAM J. Sci. Comput..

[36]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[37]  S. G. Gindikin,et al.  Integral geometry in affine and projective spaces , 1982 .

[38]  Hilbert,et al.  Methods of Mathematical Physics, vol. II. Partial Differential Equations , 1963 .

[39]  Habib Ammari,et al.  Mathematical Modelling in Photo-Acoustic Imaging , 2009 .

[40]  Otmar Scherzer,et al.  Causality analysis of frequency-dependent wave attenuation , 2011 .

[41]  Rakesh,et al.  The range of the spherical mean value operator for functions supported in a ball , 2006 .

[42]  Gabor T. Herman,et al.  Image Reconstruction From Projections , 1975, Real Time Imaging.

[43]  R. Kruger,et al.  Photoacoustic ultrasound (PAUS)--reconstruction tomography. , 1995, Medical physics.

[44]  Mark A. Anastasio,et al.  Application of inverse source concepts to photoacoustic tomography , 2007 .

[45]  S. Gindikin,et al.  Lie groups and Lie algebras : E.B. Dynkin's seminar , 1995 .

[46]  P. Burgholzer,et al.  Thermoacoustic tomography using integrating line detectors , 2005, IEEE Ultrasonics Symposium, 2005..

[47]  Otmar Scherzer,et al.  Circular integrating detectors in photo and thermoacoustic tomography , 2009 .

[48]  Peter Kuchment,et al.  On reconstruction formulas and algorithms for the thermoacoustic and photoacoustic tomography , 2007 .

[49]  G Paltauf,et al.  Weight factors for limited angle photoacoustic tomography , 2009, Physics in medicine and biology.

[50]  Lihong V. Wang,et al.  Reconstructions in limited-view thermoacoustic tomography. , 2004, Medical physics.

[51]  Frank K. Tittel,et al.  Laser-based optoacoustic imaging in biological tissues , 1994, SPIE LASE.

[52]  Otmar Scherzer,et al.  Filtered backprojection for thermoacoustic computed tomography in spherical geometry , 2005, Mathematical Methods in the Applied Sciences.

[53]  Günther Paltauf,et al.  Characterization of integrating ultrasound detectors for photoacoustic tomography , 2009 .

[54]  C. Stolk The Radon transform , 2014 .

[55]  M. Haltmeier,et al.  Mathematical Challenges Arising in Thermoacoustic Tomography with Line Detectors , 2006 .

[56]  S. Patch,et al.  Thermoacoustic tomography--consistency conditions and the partial scan problem. , 2004, Physics in medicine and biology.

[57]  Yulia Hristova,et al.  Time reversal in thermoacoustic tomography—an error estimate , 2008, 0812.0606.

[58]  Markus Haltmeier,et al.  Inversion of Spherical Means and the Wave Equation in Even Dimensions , 2007, SIAM J. Appl. Math..

[59]  Minghua Xu,et al.  Exact frequency-domain reconstruction for thermoacoustic tomography. II. Cylindrical geometry , 2002, IEEE Transactions on Medical Imaging.

[60]  Alexander A. Oraevsky,et al.  Image reconstruction in 3D optoacoustic tomography system with hemispherical transducer array , 2002, SPIE BiOS.

[61]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[62]  Robert Nuster,et al.  Compensation of acoustic attenuation for high-resolution photoacoustic imaging with line detectors , 2007, SPIE BiOS.

[63]  Mark A. Anastasio,et al.  Reconstruction of speed-of-sound and electromagnetic absorption distributions in photoacoustic tomography , 2006, SPIE BiOS.

[64]  Stephen J. Norton,et al.  Ultrasonic Reflectivity Imaging in Three Dimensions: Exact Inverse Scattering Solutions for Plane, Cylindrical, and Spherical Apertures , 1981, IEEE Transactions on Biomedical Engineering.

[65]  Otmar Scherzer,et al.  THERMOACOUSTIC TOMOGRAPHY AND THE CIRCULAR RADON TRANSFORM: EXACT INVERSION FORMULA , 2007 .

[66]  William Rundell,et al.  Surveys on solution methods for inverse problems , 2000 .

[67]  P. Kuchment,et al.  Mathematics of thermoacoustic tomography , 2007, European Journal of Applied Mathematics.

[68]  V. Tuchin Handbook of Optical Biomedical Diagnostics , 2002 .

[69]  Michael Taylor,et al.  Partial Differential Equations I: Basic Theory , 1996 .

[70]  V. Isakov Appendix -- Function Spaces , 2017 .

[71]  V. Palamodov,et al.  Reconstruction from limited data of arc means , 2000 .

[72]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[73]  Patrick J La Rivière,et al.  Image reconstruction in optoacoustic tomography for dispersive acoustic media. , 2006, Optics letters.

[75]  Otmar Scherzer,et al.  Thermoacoustic tomography using optical line detection , 2005, European Conference on Biomedical Optics.

[76]  Frank Natterer,et al.  Mathematical methods in image reconstruction , 2001, SIAM monographs on mathematical modeling and computation.

[77]  Eric Todd Quinto,et al.  The dependence of the generalized Radon transform on defining measures , 1980 .

[78]  Peter Kuchment,et al.  Synthetic focusing in ultrasound modulated tomography , 2009, 0901.2552.

[79]  M. Cheney,et al.  Synthetic aperture inversion , 2002 .

[80]  Carlos A. Berenstein,et al.  Approximation by spherical waves inLp-spaces , 1996 .

[81]  Victor Palamodov Remarks on the general Funk-Radon transform and thermoacoustic tomography , 2007 .

[82]  V. Palamodov Reconstructive Integral Geometry , 2004 .

[83]  Peter Kuchment,et al.  Range conditions for a spherical mean transform , 2009, 0902.4272.

[84]  Mark A. Anastasio,et al.  Photoacoustic and Thermoacoustic Tomography: Image Formation Principles , 2015, Handbook of Mathematical Methods in Imaging.

[85]  S. K. Patch Photoacoustic and Thermoacoustic Tomography: Consistency Conditions and the Partial Scan Problem , 2017 .

[86]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[87]  Linh V. Nguyen On singularities and instability of reconstruction in thermoacoustic tomography , 2009 .

[88]  D. Colton,et al.  The interior transmission problem , 2007 .

[89]  Otmar Scherzer,et al.  Thermoacoustic computed tomography with large planar receivers , 2004 .

[90]  Richard Courant,et al.  Methods of Mathematical Physics, Volume II: Partial Differential Equations , 1963 .

[91]  L. Kunyansky,et al.  Explicit inversion formulae for the spherical mean Radon transform , 2006, math/0609341.

[92]  G Beylkin,et al.  Diffraction tomography using arbitrary transmitter and receiver surfaces. , 1984, Ultrasonic imaging.

[93]  Leonid Kunyansky Thermoacoustic tomography with detectors on an open curve: an efficient reconstruction algorithm , 2008 .

[94]  Peter Kuchment,et al.  On the injectivity of the circular Radon transform , 2005 .

[95]  Alexander Graham Bell,et al.  Upon the production and reproduction of sound by light , 1880 .

[96]  Otmar Scherzer,et al.  Impedance-Acoustic Tomography , 2008, SIAM J. Appl. Math..

[97]  T. Nagaoka,et al.  Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry. , 2004, Physics in medicine and biology.

[98]  F. John Plane Waves and Spherical Means: Applied To Partial Differential Equations , 1981 .

[99]  L. Ehrenpreis The Universality of the Radon Transform , 2003 .

[100]  Peter Kuchment,et al.  Some problems of integral geometry arising in tomography , 2006 .

[101]  Linh V. Nguyen,et al.  Range conditions for a spherical mean transform and global extension of solutions of Darboux equation , 2009 .

[102]  Rakesh,et al.  Recovering a Function from Its Spherical Mean Values in Two and Three Dimensions , 2017 .

[103]  Frank K. Tittel,et al.  Laser optoacoustic tomography for medical diagnostics: principles , 1996, Photonics West.

[104]  M. Haltmeier,et al.  Thermoacoustic Tomography - Ultrasound Attenuation Artifacts , 2006, 2006 IEEE Nuclear Science Symposium Conference Record.

[105]  Eric Bonnetier,et al.  Electrical Impedance Tomography by Elastic Deformation , 2008, SIAM J. Appl. Math..

[106]  B. T. Cox,et al.  The challenges for quantitative photoacoustic imaging , 2009, BiOS.

[107]  V I Passechnik,et al.  Fundamentals and prospects of passive thermoacoustic tomography. , 2000, Critical reviews in biomedical engineering.

[108]  Jin Zhang,et al.  Half-time image reconstruction in thermoacoustic tomography , 2005, IEEE Transactions on Medical Imaging.

[109]  P. Burgholzer,et al.  Thermoacoustic tomography with integrating area and line detectors , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[110]  B. Vainberg,et al.  Asymptotic methods in equations of mathematical physics , 1989 .

[111]  Victor Palamodov Remarks on the generalFunk transform and thermoacoustic tomography , 2010 .

[112]  Plamen Stefanov,et al.  Integral Geometry of Tensor Fields on a Class of Non-Simple Riemannian Manifolds , 2006 .

[113]  Minghua Xu,et al.  Time-domain reconstruction for thermoacoustic tomography in a spherical geometry , 2002, IEEE Transactions on Medical Imaging.

[114]  Rakesh,et al.  Determining a Function from Its Mean Values Over a Family of Spheres , 2004, SIAM J. Math. Anal..

[115]  Eric Todd Quinto,et al.  The radon transform, inverse problems, and tomography : American Mathematical Society short course, January 3-4, 2005, Atlanta, Georgia , 2006 .

[116]  Erik L. Ritman,et al.  Local Tomography II , 1997, SIAM J. Appl. Math..

[117]  John A. Fawcett,et al.  Inversion of N-dimensional spherical averages , 1985 .

[118]  Lihong V. Wang Photoacoustic imaging and spectroscopy , 2009 .

[119]  Linh V. Nguyen A family of inversion formulas in thermoacoustic tomography , 2009, 0902.2579.

[120]  A. Pinkus,et al.  Fundamentality of Ridge Functions , 1993 .

[121]  M. Glas,et al.  Principles of Computerized Tomographic Imaging , 2000 .

[122]  B. Vainberg,et al.  ON THE SHORT WAVE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF STATIONARY PROBLEMS AND THE ASYMPTOTIC BEHAVIOUR AS t???? OF SOLUTIONS OF NON-STATIONARY PROBLEMS , 1975 .

[123]  Eric Todd Quinto,et al.  The Radon Transform, Inverse Problems, and Tomography , 2006 .

[124]  D. A. Popov,et al.  Image Restoration in Optical-Acoustic Tomography , 2004, Probl. Inf. Transm..

[125]  Yuan Xu,et al.  Exact frequency-domain reconstruction for thermoacoustic tomography. I. Planar geometry , 2002, IEEE Transactions on Medical Imaging.

[126]  Erik L. Ritman,et al.  Examples of local tomography , 1992 .

[127]  S. Jacques,et al.  Iterative reconstruction algorithm for optoacoustic imaging. , 2002, The Journal of the Acoustical Society of America.

[128]  E. T. Quinto,et al.  Range descriptions for the spherical mean Radon transform. I. Functions supported in a ball , 2006, math/0606314.

[129]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[130]  P. Kuchment Generalized Transforms of Radon Type and Their Applications , 2005 .

[131]  Guillaume Bal,et al.  Inverse transport theory of photoacoustics , 2009, 0908.4012.

[132]  S. Arridge,et al.  Estimating chromophore distributions from multiwavelength photoacoustic images. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[133]  Leonid Kunyansky A series solution and a fast algorithm for the inversion of the spherical mean Radon transform , 2007 .

[134]  Jin Zhang,et al.  Feasibility of half-data image reconstruction in 3-D reflectivity tomography with a spherical aperture , 2005, IEEE Transactions on Medical Imaging.

[135]  G. Uhlmann,et al.  Thermoacoustic tomography with variable sound speed , 2009, 0902.1973.

[136]  A. Pinkus,et al.  Approximation of Multivariate Functions , 2004 .

[137]  Lihong V. Wang,et al.  Thermoacoustic tomography with correction for acoustic speed variations , 2006, Physics in medicine and biology.

[138]  S. G. Gindikin,et al.  Selected Topics in Integral Geometry , 2003 .

[139]  Tuan Vo-Dinh,et al.  Biomedical Photonics Handbook , 2003 .

[140]  Sun,et al.  Photoacoustic monopole radiation in one, two, and three dimensions. , 1991, Physical review letters.

[141]  Lihong V. Wang,et al.  Photoacoustic imaging in biomedicine , 2006 .

[142]  Lihong V. Wang,et al.  Limited view thermoacoustic tomography , 2002, Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] [Engineering in Medicine and Biology.

[143]  K. Richard,et al.  Causality Analysis of Frequency Dependent Wave Attenuation , 2009, 0906.4678.

[144]  Minghua Xu,et al.  Erratum: Universal back-projection algorithm for photoacoustic computed tomography [Phys. Rev. E 71, 016706 (2005)] , 2007 .

[145]  M. Shubin Pseudodifferential Operators and Spectral Theory , 1987 .

[146]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[147]  A. Bell On the production and reproduction of sound by light , 1880, American Journal of Science.

[148]  Peter Kuchment,et al.  A Range Description for the Planar Circular Radon Transform , 2006, SIAM J. Math. Anal..