Dielectric spectroscopy of single cells: time domain analysis using Maxwell's mixture equation

Dielectric spectroscopy is a powerful tool for investigating the dielectric properties of biological particles in suspension. For low volume fractions, the dielectric properties of the particles are related to the measured properties of the suspension by Maxwell’s mixture equation. A number of different techniques can be used to measure the dielectric spectrum in the frequency domain or the time domain. In time domain dielectric spectroscopy, data can be converted into the frequency domain using convolution or Fourier transform, prior to data analysis. In this paper, we present a general method for transforming Maxwell’s mixture equation from the frequency domain to the time domain allowing analysis of cell dielectric properties directly in the time domain. The derivation is based on the Laplace transform of the single shell model for a spherical particle, and can be extended to the multi-shell model. For a single shelled cell two characteristic relaxation time constants are derived. The results are compared with published analytical models. We show that the original frequency dependent mixture equation can be recovered by Fourier transform back to the frequency domain. As a result, a general relationship for the dielectric response of a mixture of particles is presented which links the frequency and time domains.

[1]  Hugo Fricke A MATHEMATICAL TREATMENT OF THE ELECTRICAL CONDUCTIVITY OF COLLOIDS AND CELL SUSPENSIONS , 1924, The Journal of general physiology.

[2]  H. Schwan Electrical properties of tissue and cell suspensions. , 1957, Advances in biological and medical physics.

[3]  D. A. G. Bruggeman Berechnung Verschiederner Physikalischer Konstante von Heterogenen Substanzan , 1935 .

[4]  T. Hanai,et al.  Dielectric observations on polystyrene microcapsules and the theoretical analysis with reference to interfacial polarization , 1983 .

[5]  Hywel Morgan,et al.  AC ELECTROKINETICS: COLLOIDS AND NANOPARTICLES. , 2002 .

[6]  Thomas B. Jones,et al.  Electromechanics of Particles , 1995 .

[7]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[8]  Kenneth S. Cole,et al.  ELECTRIC IMPEDANCE OF SINGLE MARINE EGGS , 1938, The Journal of general physiology.

[9]  A. Irimajiri,et al.  A method for determining the dielectric constant and the conductivity of membrane-bounded particles of biological relevance , 1975, Biophysics of structure and mechanism.

[10]  R. Pethig,et al.  Relationship of dielectrophoretic and electrorotational behaviour exhibited by polarized particles , 1992 .

[11]  Karl Willy Wagner,et al.  Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen , 1914 .

[12]  Koji Asami,et al.  Characterization of heterogeneous systems by dielectric spectroscopy , 2002 .

[13]  H. Fricke THE ELECTRIC CAPACITY OF SUSPENSIONS WITH SPECIAL REFERENCE TO BLOOD , 1925, The Journal of general physiology.

[14]  Damijan Miklavčič,et al.  Time course of transmembrane voltage induced by time-varying electric fields—a method for theoretical analysis and its application , 1998 .

[15]  H. Curtis,et al.  THE ELECTRIC IMPEDANCE OF HEMOLYZED SUSPENSIONS OF MAMMALIAN ERYTHROCYTES. , 1935 .

[16]  ELECTRIC IMPEDANCE OF ASTERIAS EGGS , 1936, The Journal of general physiology.

[17]  H. Schwan Electrical properties of tissues and cell suspensions: mechanisms and models , 1994, Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[18]  Ronald Pethig,et al.  Theoretical and experimental investigations of the interdependence of the dielectric, dielectrophoretic and electrorotational behaviour of colloidal particles , 1993 .

[19]  Koji Asami,et al.  Dielectric Theory of Concentrated Suspensions of Shell-Spheres in Particular Reference to the Analysis of Biological Cell Suspensions , 1979 .

[20]  K. Foster,et al.  Dielectric properties of tissues and biological materials: a critical review. , 1989, Critical reviews in biomedical engineering.

[21]  K. Cole ELECTRIC IMPEDANCE OF SUSPENSIONS OF SPHERES , 1928, The Journal of general physiology.

[22]  H. Pauly,et al.  Über die Impedanz einer Suspension von kugelförmigen Teilchen mit einer Schale , 1959 .

[23]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[24]  Kenneth R. Foster,et al.  Thermal and nonthermal mechanisms of interaction of radio-frequency energy with biological systems , 2000 .

[25]  H. Schwan,et al.  Electrical properties of phospholipid vesicles. , 1970, Biophysical journal.

[26]  Yuri Feldman,et al.  Time domain dielectric spectroscopy study of biological systems , 2003 .