INTRODUCTION TO VIRTUAL KNOT THEORY

This paper is an introduction to virtual knot theory and an exposition of new ideas and constructions, including the parity bracket polynomial, the arrow polynomial, the parity arrow polynomial and categorifications of the arrow polynomial.

[1]  V. Manturov Khovanov homology for virtual links with arbitrary coefficients , 2006, math/0601152.

[2]  L. Kauffman A Survey of Virtual Knot Theory , 2000 .

[3]  Knot Diagrammatics , 2004, math/0410329.

[4]  Vaughan F. R. Jones,et al.  On knot invariants related to some statistical mechanical models , 1989 .

[5]  Louis H. Kauffman,et al.  Knots and Physics: Third Edition , 2001 .

[6]  L. Kauffman An Extended Bracket Polynomial for Virtual Knots and Links , 2007, 0712.2546.

[7]  Virtual Knot Diagrams and the Witten-Reshetikhin-Turaev Invariant , 2004, math/0407407.

[8]  W. Lickorish,et al.  An Introduction to Knot Theory , 1997 .

[9]  L. Kauffman,et al.  On Two Categorifications of the Arrow Polynomial for Virtual Knots , 2009, 0906.3408.

[10]  L. Kauffman,et al.  A Graphical Construction of the sl(3) Invariant for Virtual Knots , 2012, 1207.0719.

[11]  L. Kauffman Knots And Physics , 1991 .

[12]  On Alexander-Conway Polynomials for Virtual Knots and Links , 1999, math/9912173.

[13]  Mikhail Khovanov A categorification of the Jones polynomial , 1999 .

[14]  Naoko Kamada,et al.  MIYAZAWA POLYNOMIALS OF VIRTUAL KNOTS AND VIRTUAL CROSSING NUMBERS , 2007 .

[15]  M. Thistlethwaite LINKS WITH TRIVIAL JONES POLYNOMIAL , 2001 .

[16]  L. Kauffman,et al.  Virtual Braids , 2004, math/0407349.

[17]  Louis H. Kauffman Virtual Knot Theory , 1999, Eur. J. Comb..

[18]  L. Kauffman,et al.  Infinite families of links with trivial Jones polynomial , 2003 .

[19]  L. Kauffman,et al.  Biquandles and virtual links , 2004 .

[20]  Weyl algebras and knots , 2006, math/0610481.

[21]  Edward Witten,et al.  Quantum field theory and the Jones polynomial , 1989 .

[22]  L. Kauffman,et al.  Parity, Skein Polynomials and Categorification , 2011, 1110.4911.

[23]  V. Manturov Khovanov homology for virtual knots with arbitrary coefficients , 2007 .

[24]  S. Kamada,et al.  ABSTRACT LINK DIAGRAMS AND VIRTUAL KNOTS , 2000 .

[25]  V. Manturov Parity and cobordism of free knots , 2012 .

[26]  Louis H. Kauffman,et al.  State Models and the Jones Polynomial , 1987 .

[27]  Vaughan F. R. Jones,et al.  Hecke algebra representations of braid groups and link polynomials , 1987 .

[28]  Minimal surface representations of virtual knots and links , 2004, math/0401035.

[29]  L. Kauffman,et al.  Topological Quantum Information Theory , 2009 .

[30]  Dror Bar-Natan,et al.  Khovanov's homology for tangles and cobordisms , 2004, math/0410495.

[31]  Virtual knots and links , 2005, math/0502014.

[32]  V. Manturov Parity in knot theory , 2010 .

[33]  VIRTUAL BRAIDS AND THE L-MOVE , 2005, math/0507035.

[34]  Virtual strings , 2003, math/0310218.

[35]  L. Kauffman,et al.  Virtual Crossing Number and the Arrow , 2009 .

[36]  Louis H. Kauffman,et al.  A self-linking invariant of virtual knots , 2004, math/0405049.

[37]  Y. Miyazawa MAGNETIC GRAPHS AND AN INVARIANT FOR VIRTUAL LINKS , 2006 .

[38]  Y. R. Venturini,et al.  Phd , 2009, AINA.

[39]  Dror Bar-Natan On Khovanov’s categorification of the Jones polynomial , 2002 .

[40]  L. Kauffman,et al.  Virtual knot theory-unsolved problems , 2004, math/0405428.

[41]  Y. Miyazawa A MULTI-VARIABLE POLYNOMIAL INVARIANT FOR VIRTUAL KNOTS AND LINKS , 2008 .

[42]  Naoko Kamada An index of an enhanced state of a virtual link diagram , 2007 .

[43]  O. Viro Khovanov homology, its definitions and ramifications , 2004 .

[44]  Louis H. Kauffmans Chapter 6 – Knot Diagrammatics , 2005 .

[45]  L. Kauffman,et al.  A Categorical Model for the Virtual Braid Group , 2011, 1103.3158.

[46]  V. Turaev Virtual strings@@@Cordes virtuelles , 2004 .

[47]  V. Manturov Parity and Cobordisms of Free Knots , 2010, 1001.2827.

[48]  R. Fenn,et al.  New Invariants of Long Virtual Knots , 2007, 0705.4639.

[49]  Naoko Kamada,et al.  A 2-variable polynomial invariant for a virtual link derived from magnetic graphs , 2005 .