A continuum‐to‐atomistic bridging domain method for composite lattices

The bridging domain method is an overlapping domain decomposition approach for coupling finite element continuum models and molecular mechanics models. In this method, the total energy is decomposed into atomistic and continuum parts by complementary weight functions applied to each part of the energy in the coupling domain. To enforce compatibility, the motions of the coupled atoms are constrained by the continuum displacement field using Lagrange multipliers. For composite lattices, this approach is suboptimal because the internal modes of the lattice are suppressed by the homogeneous continuum displacement field in the coupling region. To overcome this difficulty, we present a relaxed bridging domain method. In this method, the atom set is divided into primary and secondary atoms; the relative motions between them are often called the internal modes. Only the primary atoms are constrained in the coupling region, which succeed in allowing these internal modes to fully relax. Several one- and two-dimensional examples are presented, which demonstrate improved accuracy over the standard bridging domain method. Copyright © 2009 John Wiley & Sons, Ltd.

[1]  Noam Bernstein,et al.  Multiscale simulations of silicon nanoindentation , 2001 .

[2]  Mark S. Shephard,et al.  Concurrent AtC coupling based on a blend of the continuum stress and the atomistic force , 2007 .

[3]  Noam Bernstein,et al.  Mixed finite element and atomistic formulation for complex crystals , 1999 .

[4]  Ronald E. Miller,et al.  Atomistic/continuum coupling in computational materials science , 2003 .

[5]  J. Tinsley Oden,et al.  On the application of the Arlequin method to the coupling of particle and continuum models , 2008 .

[6]  Huajian Gao,et al.  Simulating materials failure by using up to one billion atoms and the world's fastest computer: Work-hardening , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[8]  Ted Belytschko,et al.  Mechanics of defects in carbon nanotubes: Atomistic and multiscale simulations , 2005 .

[9]  Ted Belytschko,et al.  Bridging domain methods for coupled atomistic–continuum models with L2 or H1 couplings , 2009 .

[10]  H. Fischmeister,et al.  Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model , 1991 .

[11]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[12]  Weixuan Yang,et al.  A temperature‐related homogenization technique and its implementation in the meshfree particle method for nanoscale simulations , 2007 .

[13]  Noam Bernstein,et al.  Spanning the length scales in dynamic simulation , 1998 .

[14]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[15]  Shardool U. Chirputkar,et al.  Coupled Atomistic/Continuum Simulation based on Extended Space-Time Finite Element Method , 2008 .

[16]  Shaofan Li,et al.  Perfectly matched multiscale simulations , 2005 .

[17]  Mark A. Duchaineau,et al.  Atomic plasticity: description and analysis of a one-billion atom simulation of ductile materials failure , 2004 .

[18]  Harold S. Park,et al.  A phonon heat bath approach for the atomistic and multiscale simulation of solids , 2007 .

[19]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .

[20]  M. A. Dokainish,et al.  Simulation of the (001) plane crack in α-iron employing a new boundary scheme , 1982 .

[21]  J W Martin,et al.  Many-body forces in solids and the Brugger elastic constants. II. Inner elastic constants , 1975 .

[22]  Paul T. Bauman,et al.  Computational analysis of modeling error for the coupling of particle and continuum models by the Arlequin method , 2008 .

[23]  Guillaume Rateau,et al.  The Arlequin method as a flexible engineering design tool , 2005 .

[24]  Ted Belytschko,et al.  Concurrently coupled atomistic and XFEM models for dislocations and cracks , 2009 .

[25]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[26]  Harold S. Park,et al.  A surface Cauchy–Born model for nanoscale materials , 2006 .

[27]  Ted Belytschko,et al.  Finite element methods for the non‐linear mechanics of crystalline sheets and nanotubes , 2004 .

[28]  Rui Huang,et al.  Internal lattice relaxation of single-layer graphene under in-plane deformation , 2008 .

[29]  Ted Belytschko,et al.  Coupling Methods for Continuum Model with Molecular Model , 2003 .

[30]  M. Ortiz,et al.  An analysis of the quasicontinuum method , 2001, cond-mat/0103455.

[31]  Ted Belytschko,et al.  An atomistic-based finite deformation membrane for single layer crystalline films , 2002 .

[32]  J. H. Weiner,et al.  Statistical Mechanics of Elasticity , 1983 .

[33]  William A. Curtin,et al.  A coupled atomistic/continuum model of defects in solids , 2002 .

[34]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[35]  Ellad B. Tadmor,et al.  A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods , 2009 .

[36]  Patrick A. Klein,et al.  Coupled atomistic-continuum simulations using arbitrary overlapping domains , 2006, J. Comput. Phys..

[37]  Pavel B. Bochev,et al.  A Force-Based Blending Model forAtomistic-to-Continuum Coupling , 2007 .

[38]  Hachmi Ben Dhia,et al.  Multiscale mechanical problems: the Arlequin method , 1998 .

[39]  Ted Belytschko,et al.  Multiscale coupling schemes spanning the quantum mechanical, atomistic forcefield, and continuum regimes , 2008 .

[40]  Gregory J. Wagner,et al.  Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .

[41]  Ellad B. Tadmor,et al.  Hybrid Continuum Mechanics and Atomistic Methods for Simulating Materials Deformation and Failure , 2007 .