Quantitative structure‐property relationships for prediction of boiling point, vapor pressure, and melting point

Boiling point, vapor pressure, and melting point are important physicochemical properties in the modeling of the distribution and fate of chemicals in the environment. However, such data often are not available, and therefore must be estimated. Over the years, many attempts have been made to calculate boiling points, vapor pressures, and melting points by using quantitative structure-property relationships, and this review examines and discusses the work published in this area, and concentrates particularly on recent studies. A number of software programs are commercially available for the calculation of boiling point, vapor pressure, and melting point, and these have been tested for their predictive ability with a test set of 100 organic chemicals.

[1]  Ernesto Estrada,et al.  Spectral Moments of the Edge-Adjacency Matrix of Molecular Graphs, 2. Molecules Containing Heteroatoms and QSAR Applications , 1997, J. Chem. Inf. Comput. Sci..

[2]  Subhash C. Basak,et al.  A Comparative Study of Topological and Geometrical Parameters in Estimating Normal Boiling Point and Octanol/Water Partition Coefficient , 1996, J. Chem. Inf. Comput. Sci..

[3]  Paola Gramatica,et al.  3D-Modelling and Prediction by Whim Descriptors. Part 7. Physico-Chemical Properties of Haloaromatics: Comparison Between Whim and Topological Descriptors , 1997 .

[4]  Samuel H. Yalkowsky,et al.  Unified physical property estimation relationships (upper) , 1994 .

[5]  D. Mackay,et al.  Linear solvation energy relationships. 44. Parameter estimation rules that allow accurate prediction of octanol/water partition coefficients and other solubility and toxicity properties of polychlorinated biphenyls and polycyclic aromatic hydrocarbons. , 1988, Environmental science & technology.

[6]  Chein-Hsiun Tu,et al.  Group-contribution method for the estimation of vapor pressures , 1994 .

[7]  Richard D. Cramer BC(DEF) parameters. 2. An empirical structure-based scheme for the prediction of some physical properties , 1980 .

[8]  Hailing Liu,et al.  Molecular Distance-Edge Vector (): An Extension from Alkanes to Alcohols , 1999, J. Chem. Inf. Comput. Sci..

[9]  Zhiliang Li,et al.  Approach to Estimation and Prediction for Normal Boiling Point (NBP) of Alkanes Based on a Novel Molecular Distance-Edge (MDE) Vector , 1998, J. Chem. Inf. Comput. Sci..

[10]  D. Lenoir,et al.  Description of Vapour Pressures of Polycyclic Aromatic Compounds by Graph Theoretical Indices , 1997 .

[11]  S. Yalkowsky,et al.  UPPER III: unified physical property estimation relationships. Application to non-hydrogen bonding aromatic compounds. , 1999, Journal of pharmaceutical sciences.

[12]  An Analysis of Nasal Irritation Thresholds Using a New Solvation Equation , 1996 .

[13]  Yoram Cohen,et al.  Neural Network Based Temperature-Dependent Quantitative Structure Property Relations (QSPRs) for Predicting Vapor Pressure of Hydrocarbons , 2001, J. Chem. Inf. Comput. Sci..

[14]  M. Nendza Structure-activity relationships in environmental sciences , 1998 .

[15]  David T. Stanton,et al.  Development of a Quantitative Structure-Property Relationship Model for Estimating Normal Boiling Points of Small Multifunctional Organic Molecules , 2000, J. Chem. Inf. Comput. Sci..

[16]  Milan Randic,et al.  Construction of High-Quality Structure-Property-Activity Regressions: The Boiling Points of Sulfides , 2000, J. Chem. Inf. Comput. Sci..

[17]  D. Hawker Vapor pressures and Henry's law constants of polychlorinated biphenyls , 1989 .

[18]  G. R. Somayajulu The melting points of ultralong paraffins and their homologues , 1990 .

[19]  Ernesto Estrada,et al.  Molecular Connectivity Indices of Iterated Line Graphs. A New Source of Descriptors for QSPR and QSAR Studies , 1998 .

[20]  M. Chastrette,et al.  Structure-Property Relationships-Determination of the Vapor Pressure of Hydrocarbons and Oxygenated Compounds using Multifunctional Autocorrelation Method (MAM) , 1995 .

[21]  Samuel H. Yalkowsky,et al.  Boiling Point and Melting Point Prediction for Aliphatic, Non-Hydrogen-Bonding Compounds , 1995 .

[22]  Haruo Hosoya,et al.  Topological Index and Thermodynamic Properties, 5. How Can We Explain the Topological Dependency of Thermodynamic Properties of Alkanes with the Topology of Graphs? , 1999, J. Chem. Inf. Comput. Sci..

[23]  Palanisamy Thanikaivelan,et al.  Application of quantum chemical descriptor in quantitative structure activity and structure property relationship , 2000 .

[24]  S. Yalkowsky,et al.  Estimation of aqueous solubility and melting point of PCB congeners , 1990 .

[25]  Paola Gramatica,et al.  Classification of organic solvents and modelling of their physico-chemical properties by chemometric methods using different sets of molecular descriptors , 1999 .

[26]  L. Hall,et al.  Boiling Point of a Set of Alkanes, Alcohols and Chloroalkanes: QSAR with Atom Type Electrotopological State Indices Using Artificial Neural Networks , 1997 .

[27]  D. H. Rouvray,et al.  Novel applications of topological indices. 3. prediction of the vapor pressure in polychlorinated biphenyls , 1989 .

[28]  Saikia Arupjyoti,et al.  New Electrotopological Descriptor for Prediction of Boiling Points of Alkanes and Aliphatic Alcohols Through Artificial Neural Network and Multiple Linear Regression Analysis , 1998, Comput. Chem..

[29]  M. Karelson,et al.  Structurally diverse quantitative structure--property relationship correlations of technologically relevant physical properties , 2000, Journal of chemical information and computer sciences.

[30]  Subhash C. Basak,et al.  Normal Boiling Points of 1, -Alkanedinitriles: The Highest Increment in a Homologous Series , 1999, J. Chem. Inf. Comput. Sci..

[31]  K. Joback,et al.  ESTIMATION OF PURE-COMPONENT PROPERTIES FROM GROUP-CONTRIBUTIONS , 1987 .

[32]  S. Yalkowsky,et al.  Quantitative Structure Property Relationship In The Prediction Of Melting Point And Boiling Point Of Rigid Non-Hydrogen Bonding Organic Molecules , 1993 .

[33]  Yilin Wang,et al.  QSPR Studies on Vapor Pressure, Aqueous Solubility, and the Prediction of Water-Air Partition Coefficients , 1998, J. Chem. Inf. Comput. Sci..

[34]  Subhash C. Basak,et al.  Correlation between Structure and Normal Boiling Points of Acyclic Carbonyl Compounds , 1999, J. Chem. Inf. Comput. Sci..

[35]  M. Charton,et al.  Quantitative description of structural effects on melting points of substituted alkanes , 1994 .

[36]  Subhash C. Basak,et al.  Use of mathematical structural invariants in the development of QSPR models , 2001 .

[37]  J. M. Prausnitz,et al.  Vapor Pressures of Heavy Liquid Hydrocarbons by a Group-Contribution Method , 1979 .

[38]  Alan R. Katritzky,et al.  Normal Boiling Points for Organic Compounds: Correlation and Prediction by a Quantitative Structure-Property Relationship , 1998, J. Chem. Inf. Comput. Sci..

[39]  Milan Randic,et al.  A New Descriptor for Structure-Property and Structure-Activity Correlations , 2001, J. Chem. Inf. Comput. Sci..

[40]  Estimation of vapor pressures for halogenated aromatic hydrocarbons by a group-contribution method , 1985 .

[41]  Samuel H. Yalkowsky,et al.  Melting Point, Boiling Point, and Symmetry , 1990, Pharmaceutical Research.

[42]  Jorge A. Marrero,et al.  Group-contribution based estimation of pure component properties , 2001 .

[43]  David Robert,et al.  Use of electron-electron repulsion energy as a molecular descriptor in QSAR and QSPR studies , 2000, J. Comput. Aided Mol. Des..

[44]  S C Basak,et al.  Distance Indices and Their Hyper-Counterparts: Intercorrelation and Use in the Structure-Property Modeling , 2001, SAR and QSAR in environmental research.

[45]  S. Yalkowsky,et al.  A method for estimating the boiling points of organic compounds from their melting points , 1995 .

[46]  A. L. Horvath Molecular Design: Chemical Structure Generation from the Properties of Pure Organic Compounds , 1992 .

[47]  Samuel H. Yalkowsky,et al.  Melting point and normal boiling point correlations: applications to rigid aromatic compounds , 1993, J. Chem. Inf. Comput. Sci..

[48]  S. Bhattacharjee,et al.  A New Index for Molecular Property Correlation in Halomethanes , 1991, Comput. Chem..

[49]  Roumiana P. Stateva,et al.  Estimation of normal boiling points of hydrocarbons from descriptors of molecular structure , 1999 .

[50]  Alan R. Katritzky,et al.  Prediction of Melting Points for the Substituted Benzenes: A QSPR Approach , 1997, J. Chem. Inf. Comput. Sci..

[51]  John J. Marano,et al.  General equation for correlating the thermophysical properties of n-paraffins, n-olefins, and other homologous series : 2. Asymptotic behavior correlations for PVT properties , 1997 .

[52]  S. Yalkowsky,et al.  Estimation of melting point of flexible molecules: Aliphatic hydrocarbons , 1988 .

[53]  R. Todeschini,et al.  The WHIM Theory: New 3D-molecular descriptors for QSAR in environmental modelling , 1997 .

[54]  J. Prausnitz,et al.  Vapor Pressures of Liquids as a Function of Temperature. Two-Parameter Equation Based on Kinetic Theory of Fluids , 1974 .

[55]  J. Topliss,et al.  Chance correlations in structure-activity studies using multiple regression analysis , 1972 .

[56]  Lowell H. Hall,et al.  Boiling Point and Critical Temperature of a Heterogeneous Data Set: QSAR with Atom Type Electrotopological State Indices Using Artificial Neural Networks , 1996, J. Chem. Inf. Comput. Sci..

[57]  B. Rordorf Prediction of vapor pressures, boiling points and enthalpies of fusion for twenty-nine halogenated dibenzo-p-dioxins , 1987 .

[58]  Paola Gramatica,et al.  Weighted holistic invariant molecular descriptors. Part 2. Theory development and applications on modeling physicochemical properties of polyaromatic hydrocarbons , 1995 .

[59]  Y. Kuznetsov,et al.  Prediction of Vapour Pressure and Boiling Points of Aliphatic Compounds , 1994 .

[60]  Sujit Banerjee,et al.  Aqueous solubility : methods of estimation for organic compounds , 1992 .

[61]  T. Shaffer,et al.  Quantitative Structure‐Activity Relationships of Perfluorinated Hetero‐Hydrocarbons as Potential Respiratory Media: Application to Oxygen Solubility, Partition Coefficient, Viscosity, Vapor Pressure, and Density , 1996, ASAIO journal.

[62]  A. Pino,et al.  Modelling physico-chemical properties of halogenated benzenes: QSAR optimisation through variables selection. , 1995, SAR and QSAR in environmental research.

[63]  Nenad Trinajstic,et al.  Nonlinear Multivariate Regression Outperforms Several Concisely Designed Neural Networks on Three QSPR Data Sets , 2000, J. Chem. Inf. Comput. Sci..

[64]  L. Burkhard,et al.  Estimation of vapor pressures for polychlorinated biphenyls: a comparison of eleven predictive methods. , 1985, Environmental science & technology.

[65]  R. N. Maddox,et al.  Application of a nonlinear group-contribution model to the prediction of physical constants. 1. Predicting normal boiling points with molecular structure , 1987 .

[66]  Danail Bonchev,et al.  Overall Connectivities/Topological Complexities: A New Powerful Tool for QSPR/QSAR , 2000, J. Chem. Inf. Comput. Sci..

[67]  Ralph Kühne,et al.  Estimation of vapour pressures for hydrocarbons and halogenated hydrocarbons from chemical structure by a neural network , 1997 .

[68]  Alessandro Ulrici,et al.  Development of Quantitative Structure-Property Relationships Using Calculated Descriptors for the Prediction of the Physicochemical Properties (nD, , bp, , ) of a Series of Organic Solvents , 1999, J. Chem. Inf. Comput. Sci..

[69]  Paola Gramatica,et al.  SD-modelling and Prediction by WHIM Descriptors. Part 5. Theory Development and Chemical Meaning of WHIM Descriptors , 1997 .

[70]  Luwei Zhao,et al.  A Combined Group Contribution and Molecular Geometry Approach for Predicting Melting Points of Aliphatic Compounds , 1999 .

[71]  P. Labute A widely applicable set of descriptors. , 2000, Journal of molecular graphics & modelling.

[72]  Fugacity Calculations Using Estimated Physicochemical Properties , 1993 .

[73]  Peter C. Jurs,et al.  Quantitative Structure-Property Relationships for the Prediction of Vapor Pressures of Organic Compounds from Molecular Structures , 2000, J. Chem. Inf. Comput. Sci..

[74]  Bernd Beck,et al.  QM/NN QSPR Models with Error Estimation: Vapor Pressure and LogP , 2000, J. Chem. Inf. Comput. Sci..

[75]  Peter C. Jurs,et al.  Prediction of the Normal Boiling Points of Organic Compounds from Molecular Structures with a Computational Neural Network Model , 1999, J. Chem. Inf. Comput. Sci..

[76]  Zhiliang Li,et al.  On Molecular Polarizability: 2. Relationship to the Boiling Point of Alkanes and Alcohols , 1999, J. Chem. Inf. Comput. Sci..

[77]  M. Karelson,et al.  Correlation of Boiling Points with Molecular Structure. 1. A Training Set of 298 Diverse Organics and a Test Set of 9 Simple Inorganics , 1996 .

[78]  Oswaldo Araujo,et al.  Properties of New Orthogonal Graph Theoretical Invariants in Structure-Property Correlations , 1998, J. Chem. Inf. Comput. Sci..

[79]  Modelling drug design II: QSAR approach to the prediction of melting points of substituted anilines , 1988 .

[80]  Gerta Rücker,et al.  On Topological Indices, Boiling Points, and Cycloalkanes , 1999, J. Chem. Inf. Comput. Sci..

[81]  J. Dearden The prediction of melting point , 1999 .

[82]  Subhash C. Basak,et al.  Use of Topostructural, Topochemical, and Geometric Parameters in the Prediction of Vapor Pressure: A Hierarchical QSAR Approach , 1997, J. Chem. Inf. Comput. Sci..

[83]  Terry S. Carlton,et al.  Correlation of Boiling Points with Molecular Structure for Chlorofluoroethanes , 1998, J. Chem. Inf. Comput. Sci..

[84]  Ovidiu Ivanciuc,et al.  Design of Topological Indices. Part 10.1 Parameters Based on Electronegativity and Covalent Radius for the Computation of Molecular Graph Descriptors for Heteroatom-Containing Molecules , 1998, J. Chem. Inf. Comput. Sci..

[85]  R. M. Muir,et al.  Correlation of Biological Activity of Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients , 1962, Nature.

[86]  J. Dearden,et al.  The QSAR prediction of melting point, a property of environmental relevance. , 1991, The Science of the total environment.

[87]  Subhash C. Basak,et al.  QSPR Modeling: Graph Connectivity Indices versus Line Graph Connectivity Indices , 2000, J. Chem. Inf. Comput. Sci..

[88]  Ovidiu Ivanciuc,et al.  Quantitative structure-property relationship study of normal boiling points for halogen-/ oxygen-/ sulfur-containing organic compounds using the CODESSA program , 1998 .

[89]  A. Site,et al.  The Vapor Pressure of Environmentally Significant Organic Chemicals: A Review of Methods and Data at Ambient Temperature , 1997 .

[90]  Alexander P. Bünz,et al.  Application of quantitative structure-performance relationship and neural network models for the prediction of physical properties from molecular structure , 1998 .

[91]  W. Banks 65. Considerations of a vapour pressure–temperature equation, and their relation to Burnop's boiling-point function , 1939 .

[92]  Ping Li,et al.  Predicting the Entropy of Boiling for Organic Compounds , 1999, J. Chem. Inf. Comput. Sci..

[93]  Igor I. Baskin,et al.  A Neural Device for Searching Direct Correlations between Structures and Properties of Chemical Compounds , 1997, J. Chem. Inf. Comput. Sci..

[94]  S. Yalkowsky,et al.  Relationships between Melting Point and Boiling Point of Organic Compounds , 1994 .

[95]  R. Gani,et al.  New group contribution method for estimating properties of pure compounds , 1994 .

[96]  Mohammad R. Riazi,et al.  Physical Properties of n-Alkanes and n-Alkylhydrocarbons: Application to Petroleum Mixtures , 1995 .

[97]  Cikui Liang,et al.  QSPR Prediction of Vapor Pressure from Solely Theoretically-Derived Descriptors , 1998, J. Chem. Inf. Comput. Sci..

[98]  A. K. Madan,et al.  Eccentric Connectivity Index: A Novel Highly Discriminating Topological Descriptor for Structure-Property and Structure-Activity Studies , 1997, J. Chem. Inf. Comput. Sci..

[99]  P Gramatica,et al.  3D-modelling and prediction by WHIM descriptors. Part 8. Toxicity and physico-chemical properties of environmental priority chemicals by 2D-TI and 3D-WHIM descriptors. , 1997, SAR and QSAR in environmental research.

[100]  Stephen E. Stein,et al.  Estimation of normal boiling points from group contributions , 1994, J. Chem. Inf. Comput. Sci..

[101]  Y. Kuznetsov,et al.  PREDICTION OF VAPOR PRESSURE OF VOLATILE CORROSION INHIBITORS , 1996 .

[102]  Samuel H. Yalkowsky,et al.  Group Contribution Methods for Predicting the Melting Points and Boiling Points of Aromatic Compounds , 1994 .

[103]  Lionello Pogliani,et al.  Molecular Modeling by Linear Combinations of Connectivity Indexes , 1995 .

[104]  Ernesto Estrada,et al.  Spectral Moments of the Edge Adjacency Matrix in Molecular Graphs, 1. Definition and Applications to the Prediction of Physical Properties of Alkanes , 1996, J. Chem. Inf. Comput. Sci..

[105]  Paola Gramatica,et al.  3D‐modelling and Prediction by WHIM Descriptors. Part 6. Application of WHIM Descriptors in QSAR Studies , 1997 .

[106]  Paola Gramatica,et al.  3D-modelling and prediction by WHIM descriptors. Part 9. Chromatographic relative retention time and physico-chemical properties of polychlorinated biphenyls (PCBs) , 1998 .

[107]  Quantitative structure–property relationships and neural networks: correlation and prediction of physical properties of pure components and mixtures from molecular structure , 1999 .

[108]  Takahiro Suzuki,et al.  Quantitative Structure-Property Relationships for the Estimation of Boiling Point and Flash Point Using a Radial Basis Function Neural Network , 1999, J. Chem. Inf. Comput. Sci..

[109]  Peter C. Jurs,et al.  Prediction of Vapor Pressures of Hydrocarbons and Halohydrocarbons from Molecular Structure with a Computational Neural Network Model , 1999, J. Chem. Inf. Comput. Sci..

[110]  Modeling with Semiempirical Molecular Connectivity Terms , 1999 .

[111]  Ernesto Estrada,et al.  Extension of Edge Connectivity Index. Relationships to Line Graph Indices and QSPR Applications , 1998, J. Chem. Inf. Comput. Sci..

[112]  Milan Randic,et al.  Optimal Molecular Descriptors Based on Weighted Path Numbers , 1999, J. Chem. Inf. Comput. Sci..

[113]  Lionello Pogliani,et al.  Modeling with Molecular Pseudoconnectivity Descriptors. A Useful Extension of the Intrinsic I-State Concept , 2000 .

[114]  Subhash C. Basak,et al.  Quantitative Structure-Property Relationships (QSPRs) for the Estimation of Vapor Pressure: A Hierarchical Approach Using Mathematical Structural Descriptors , 2001, J. Chem. Inf. Comput. Sci..

[115]  N. Trinajstić,et al.  New Developments in QSPR/QSAR Modeling Based on Topological Indices , 1997 .

[116]  Didier Villemin,et al.  Application of neural network approach for prediction of some thermochemical properties of alkanes , 1994 .

[117]  Sujit Banerjee,et al.  General structure-vapor pressure relationships for organics , 1990 .

[118]  N. Andreev TO THE QUANTITATIVE ESTIMATION OF THE VAPOR PRESSURE OF VOLATILE CORROSIONINHIBITORS , 1998 .

[119]  Ekaterina Gordeeva,et al.  Traditional topological indexes vs electronic, geometrical, and combined molecular descriptors in QSAR/QSPR research , 1993, J. Chem. Inf. Comput. Sci..

[120]  G. Cash Prediction of physicochemical properties from euclidean distance methods based on electrotopological state indices , 1999 .

[121]  Daniel Cabrol-Bass,et al.  Evaluation in Quantitative Structure-Property Relationship Models of Structural Descriptors Derived from Information-Theory Operators , 2000, J. Chem. Inf. Comput. Sci..

[122]  Peter C. Jurs,et al.  Prediction of Normal Boiling Points for a Diverse Set of Industrially Important Organic Compounds from Molecular Structure , 1995, J. Chem. Inf. Comput. Sci..

[123]  M. Abraham,et al.  Physicochemical properties of nonreactive volatile organic chemicals to estimate RD50: alternatives to animal studies. , 1995, Toxicology and applied pharmacology.

[124]  Alexandre Arenas,et al.  Neural Network Based Quantitative Structural Property Relations (QSPRs) for Predicting Boiling Points of Aliphatic Hydrocarbons , 2000, J. Chem. Inf. Comput. Sci..

[125]  Aage Fredenslund,et al.  Vapor−Liquid Equilibria by UNIFAC Group Contribution. 6. Revision and Extension , 1979 .

[126]  Alan R. Katritzky,et al.  Predicting Physical Properties from Molecular Structure , 1994 .

[127]  Predicting environmental fate parameters with infrared spectroscopy , 1997 .

[128]  L. Pogliani Modeling with Special Descriptors Derived from a Medium-Sized Set of Connectivity Indices , 1996 .