Linking rainfall-induced landslides with debris flows runout patterns towards catchment scale hazard assessment

Abstract Debris flows and landslides induced by heavy rainfall represent an ubiquitous and destructive natural hazard in steep mountainous regions. For debris flows initiated by shallow landslides, the prediction of the resulting pathways and associated hazard is often hindered by uncertainty in determining initiation locations, volumes and mechanical state of the mobilized debris (and by model parameterization). We propose a framework for linking a simplified physically-based debris flow runout model with a novel Landslide Hydro-mechanical Triggering (LHT) model to obtain a coupled landslide-debris flow susceptibility and hazard assessment. We first compared the simplified debris flow model of Perla (1980) with a state-of-the art continuum-based model (RAMMS) and with an empirical model of Rickenmann (1999) at the catchment scale. The results indicate that predicted runout distances by the Perla model are in reasonable agreement with inventory measurements and with the other models. Predictions of localized shallow landslides by LHT model provides information on water content of released mass. To incorporate effects of water content and flow viscosity as provided by LHT on debris flow runout, we adapted the Perla model. The proposed integral link between landslide triggering susceptibility quantified by LHT and subsequent debris flow runout hazard calculation using the adapted Perla model provides a spatially and temporally resolved framework for real-time hazard assessment at the catchment scale or along critical infrastructure (roads, railroad lines).

[1]  Peter Lehmann,et al.  Fiber bundle model for multiscale modeling of hydromechanical triggering of shallow landslides , 2009 .

[2]  Long Le,et al.  A two-fluid model for avalanche and debris flows , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  Arvid M. Johnson Physical processes in geology;: A method for interpretation of natural phenomena; intrusions in igneous rocks, fractures, and folds, flow of debris and ice , 1970 .

[4]  T. Pierson,et al.  Erosion and deposition by debris flows at Mt Thomas, North Canterbury, New Zealand , 1980 .

[5]  D. Or,et al.  Linking rainfall-induced landslides with predictions of debris flow runout distances , 2016, Landslides.

[6]  Dieter Rickenmann,et al.  Empirical Relationships for Debris Flows , 1999 .

[7]  Peter Lehmann,et al.  Effects of rainfall spatial variability and intermittency on shallow landslide triggering patterns at a catchment scale , 2014 .

[8]  J. Vallance,et al.  OBJECTIVE DELINEATION OF LAHAR-INUNDATION HAZARD ZONES , 1998 .

[9]  Helmut J. Körner,et al.  Reichweite und Geschwindigkeit von Bergstürzen und Fließschneelawinen , 1976 .

[10]  R J Fannin,et al.  An empirical-statistical model for debris flow travel distance , 2001 .

[11]  M. Jakob Debris-flow hazard analysis , 2005 .

[12]  Allen Bateman,et al.  Evaluation of approaches to calculate debris-flow parameters for hazard assessment , 2008 .

[13]  U. Gruber,et al.  Snow avalanche hazard modelling of large areas using shallow water numerical methods and GIS , 2007, Environ. Model. Softw..

[14]  R. Soeters,et al.  Landslide hazard and risk zonation—why is it still so difficult? , 2006 .

[15]  Oldrich Hungr,et al.  A model for the runout analysis of rapid flow slides, debris flows, and avalanches , 1995 .

[16]  Giovanni B. Crosta,et al.  Field observations, rheological testing and numerical modelling of a debris‐flow event , 2007 .

[17]  Scott McDougall,et al.  Two numerical models for landslide dynamic analysis , 2009, Comput. Geosci..

[18]  B. Salm,et al.  Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining , 1999, Journal of Glaciology.

[19]  Adrian M. Altenhoff,et al.  A gridded hourly precipitation dataset for Switzerland using rain‐gauge analysis and radar‐based disaggregation , 2010 .

[20]  Timothy R. H. Davies,et al.  Large debris flows: A macro-viscous phenomenon , 1986 .

[21]  Peter Lehmann,et al.  Effects of soil spatial variability at the hillslope and catchment scales on characteristics of rainfall‐induced landslides , 2016 .

[22]  R. H. Brooks,et al.  Hydraulic Properties of Porous Media and Their Relation to Drainage Design , 1964 .

[23]  Hans J. Herrmann,et al.  Extensions of Fibre Bundle Models , 2006 .

[24]  M. Maggioni,et al.  The influence of topographic parameters on avalanche release dimension and frequency , 2003 .

[25]  Thomas Glade,et al.  Linking debris-flow hazard assessments with geomorphology , 2005 .

[26]  Jacques Locat,et al.  VISCOSITY, YIELD STRESS, REMOLDED STRENGTH, AND LIQUIDITY INDEX RELATIONSHIPS FOR SENSITIVE CLAYS , 1988 .

[27]  C. Brennen,et al.  Revisiting the 1954 suspension experiments of R. A. Bagnold , 2002, Journal of Fluid Mechanics.

[28]  D. Or,et al.  Effects of hydromechanical loading history and antecedent soil mechanical damage on shallow landslide triggering , 2015 .

[29]  D. Or,et al.  Hydromechanical triggering of landslides: From progressive local failures to mass release , 2012 .

[30]  Jeffrey J. McDonnell,et al.  Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis , 2006 .

[31]  J. Malet,et al.  Recommendations for the quantitative analysis of landslide risk , 2013, Bulletin of Engineering Geology and the Environment.

[32]  F. Graf,et al.  Effects of forests on shallow landslides - case studies in Switzerland , 2009 .

[33]  D. Laigle,et al.  Comparison of 2D debris-flow simulation models with field events , 2006 .

[34]  Peter Lehmann,et al.  Rainfall‐triggered shallow landslides at catchment scale: Threshold mechanics‐based modeling for abruptness and localization , 2013 .

[35]  Shoji Noguchi,et al.  Stormflow generation in steep forested headwaters: a linked hydrogeomorphic paradigm , 2000 .

[36]  Richard M. Iverson,et al.  The debris-flow rheology myth , 2003 .

[37]  Richard E. Giraud GUIDELINES FOR THE GEOLOGIC EVALUATION OF DEBRIS-FLOW HAZARDS ON ALLUVIAL FANS IN UTAH , 2005 .

[38]  J. Godt,et al.  A closed‐form equation for effective stress in unsaturated soil , 2010 .

[39]  Oldrich Hungr,et al.  Quantitative analysis of debris torrent hazards for design of remedial measures , 1984 .

[40]  M. Schatzmann,et al.  Experimental study on rheologic behaviour of debris flow material , 2007 .

[41]  K. Whipple,et al.  The influence of debris-flow rheology on fan morphology, Owens Valley, California , 1992 .

[42]  M. Selby,et al.  Hillslope materials and processes , 1982 .

[43]  Jordi Corominas,et al.  The angle of reach as a mobility index for small and large landslides , 1996 .

[44]  D. M. Cruden,et al.  MOMENTUM TRANSFER AND FRICTION IN THE DEBRIS OF ROCK AVALANCHES , 1989 .

[45]  S. Savage,et al.  The motion of a finite mass of granular material down a rough incline , 1989, Journal of Fluid Mechanics.

[46]  Thomas C. Pierson,et al.  A rheologic classification of subaerial sediment-water flows , 1987 .

[47]  Marcel Hürlimann,et al.  Detailed debris flow hazard assessment in Andorra: A multidisciplinary approach , 2006 .

[48]  D. Mcclung,et al.  A Two–Parameter Model of Snow–Avalanche Motion , 1980, Journal of Glaciology.

[49]  H. Herrmann,et al.  Fiber bundle models for composite materials , 2006 .

[50]  Chris Phillips,et al.  Determining rheological parameters of debris flow material , 1991 .

[51]  R. Bagnold Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[52]  Manuel Jesús Castro Díaz,et al.  A new Savage-Hutter type model for submarine avalanches and generated tsunami , 2008, J. Comput. Phys..

[53]  Tamotsu Takahashi,et al.  Debris Flow: Mechanics, Prediction and Countermeasures , 2007 .

[54]  R. Guthrie,et al.  An examination of controls on debris flow mobility: Evidence from coastal British Columbia , 2010 .

[55]  Richard M. Iverson,et al.  Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory , 2001 .

[56]  S. Pudasaini A general two-phase debris flow model , 2012 .

[57]  A. Heim Bergsturz und Menschenleben , 1932 .

[58]  P. Julien,et al.  Two‐Dimensional Water Flood and Mudflow Simulation , 1993 .

[59]  S. D. Gregorio,et al.  Simulating debris flows through a hexagonal cellular automata model: SCIDDICA S 3–hex , 2003 .

[60]  Marc Christen,et al.  RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain , 2010 .

[61]  Teamrat A. Ghezzehei,et al.  Rheological properties of wet soils and clays under steady and oscillatory stresses , 2000 .

[62]  Marcel Hürlimann,et al.  Field and laboratory analysis of the runout characteristics of hillslope debris flows in Switzerland , 2015 .

[63]  D. L. Brakensiek,et al.  Estimation of Soil Water Properties , 1982 .

[64]  C. Mullins,et al.  The strength of unsaturated mixtures of sand and kaolin and the concept of effective stress , 1984 .

[65]  Prabhu R. Nott,et al.  Frictional–collisional equations of motion for participate flows and their application to chutes , 1990, Journal of Fluid Mechanics.

[66]  P. Finlay,et al.  Landslide risk assessment: prediction of travel distance , 1999 .

[67]  R. Iverson,et al.  U. S. Geological Survey , 1967, Radiocarbon.