A generative model of whole-brain effective connectivity

[1]  Koen V. Haak,et al.  Thresholding functional connectomes by means of mixture modeling , 2018, NeuroImage.

[2]  Kun Zhang,et al.  Causal Discovery of Feedback Networks with Functional Magnetic Resonance Imaging , 2018, bioRxiv.

[3]  E. Rolls,et al.  Effective Connectivity in Depression. , 2017, Biological psychiatry. Cognitive neuroscience and neuroimaging.

[4]  Mark W. Woolrich,et al.  Discovering dynamic brain networks from big data in rest and task , 2017, NeuroImage.

[5]  Matthieu Gilson,et al.  Effective connectivity inferred from fMRI transition dynamics during movie viewing points to a balanced reconfiguration of cortical interactions , 2017, NeuroImage.

[6]  Dimitri Van De Ville,et al.  Interactions Between Large-Scale Functional Brain Networks are Captured by Sparse Coupled HMMs , 2018, IEEE Transactions on Medical Imaging.

[7]  Rüdiger Stirnberg,et al.  Rapid whole-brain resting-state fMRI at 3 T: Efficiency-optimized three-dimensional EPI versus repetition time-matched simultaneous-multi-slice EPI , 2017, NeuroImage.

[8]  Lilian A. E. Weber,et al.  Computational Psychosomatics and Computational Psychiatry: Toward a Joint Framework for Differential Diagnosis , 2017, Biological Psychiatry.

[9]  Matthieu Gilson,et al.  Task-related effective connectivity reveals that the cortical rich club gates cortex-wide communication , 2017, bioRxiv.

[10]  Fikret Isik Karahanoglu,et al.  Dynamics of large-scale fMRI networks: Deconstruct brain activity to build better models of brain function , 2017 .

[11]  Joachim M. Buhmann,et al.  Regression DCM for fMRI , 2017, NeuroImage.

[12]  Klaas E. Stephan,et al.  Analysis and correction of field fluctuations in fMRI data using field monitoring , 2017, NeuroImage.

[13]  Luca Ambrogioni,et al.  GP CaKe: Effective brain connectivity with causal kernels , 2017, NIPS.

[14]  Alessandro Chiuso,et al.  Estimating effective connectivity in linear brain network models , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[15]  Viktor K. Jirsa,et al.  The Virtual Epileptic Patient: Individualized whole-brain models of epilepsy spread , 2017, NeuroImage.

[16]  Karl J. Friston,et al.  Large-scale DCMs for resting-state fMRI , 2017, Network Neuroscience.

[17]  Jean M. Vettel,et al.  The energy landscape underpinning module dynamics in the human brain connectome , 2016, NeuroImage.

[18]  Clark Glymour,et al.  A million variables and more: the Fast Greedy Equivalence Search algorithm for learning high-dimensional graphical causal models, with an application to functional magnetic resonance images , 2016, International Journal of Data Science and Analytics.

[19]  Karl J. Friston,et al.  The dysconnection hypothesis (2016) , 2016, Schizophrenia Research.

[20]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[21]  Matthieu Gilson,et al.  Estimation of Directed Effective Connectivity from fMRI Functional Connectivity Hints at Asymmetries of Cortical Connectome , 2016, PLoS Comput. Biol..

[22]  M. Frank,et al.  Computational psychiatry as a bridge from neuroscience to clinical applications , 2016, Nature Neuroscience.

[23]  K. Stephan,et al.  Translational Perspectives for Computational Neuroimaging , 2015, Neuron.

[24]  Gustavo Deco,et al.  Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling , 2015, PLoS Comput. Biol..

[25]  Dimitri Van De Ville,et al.  Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks , 2015, Nature Communications.

[26]  M. Breakspear,et al.  The connectomics of brain disorders , 2015, Nature Reviews Neuroscience.

[27]  Maurizio Corbetta,et al.  Resting-State Temporal Synchronization Networks Emerge from Connectivity Topology and Heterogeneity , 2015, PLoS Comput. Biol..

[28]  Roman Filipovych,et al.  Identifying Sparse Connectivity Patterns in the brain using resting-state fMRI , 2015, NeuroImage.

[29]  Michael W. Cole,et al.  Early-Course Unmedicated Schizophrenia Patients Exhibit Elevated Prefrontal Connectivity Associated with Longitudinal Change , 2015, The Journal of Neuroscience.

[30]  Ekaterina I. Lomakina,et al.  Machine learning in neuroimaging: methodological investigations and applications to fMRI , 2015 .

[31]  M. Kringelbach,et al.  Great Expectations: Using Whole-Brain Computational Connectomics for Understanding Neuropsychiatric Disorders , 2014, Neuron.

[32]  Klaas E. Stephan,et al.  Matched-filter acquisition for BOLD fMRI , 2014, NeuroImage.

[33]  Adeel Razi,et al.  A DCM for resting state fMRI , 2014, NeuroImage.

[34]  Karl J. Friston,et al.  Computational psychiatry: the brain as a phantastic organ. , 2014, The lancet. Psychiatry.

[35]  Ravi S. Menon,et al.  Identification of Optimal Structural Connectivity Using Functional Connectivity and Neural Modeling , 2014, The Journal of Neuroscience.

[36]  M. Corbetta,et al.  How Local Excitation–Inhibition Ratio Impacts the Whole Brain Dynamics , 2014, The Journal of Neuroscience.

[37]  C. Mathys,et al.  Computational approaches to psychiatry , 2014, Current Opinion in Neurobiology.

[38]  Luca Ambrogioni,et al.  Structurally-informed Bayesian functional connectivity analysis , 2014, NeuroImage.

[39]  Steen Moeller,et al.  Evaluation of slice accelerations using multiband echo planar imaging at 3T , 2013, NeuroImage.

[40]  Yong He,et al.  BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics , 2013, PloS one.

[41]  Maurizio Corbetta,et al.  Resting-State Functional Connectivity Emerges from Structurally and Dynamically Shaped Slow Linear Fluctuations , 2013, The Journal of Neuroscience.

[42]  Fenna M. Krienen,et al.  Opportunities and limitations of intrinsic functional connectivity MRI , 2013, Nature Neuroscience.

[43]  Gustavo Deco,et al.  Resting brains never rest: computational insights into potential cognitive architectures , 2013, Trends in Neurosciences.

[44]  Karl J. Friston,et al.  Analysing connectivity with Granger causality and dynamic causal modelling , 2013, Current Opinion in Neurobiology.

[45]  Olaf Sporns,et al.  Network attributes for segregation and integration in the human brain , 2013, Current Opinion in Neurobiology.

[46]  A. Davie,et al.  Improved bound for complexity of matrix multiplication , 2013, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[47]  Karl J. Friston,et al.  Network discovery with large DCMs , 2013, NeuroImage.

[48]  Daniel Hernández-Lobato,et al.  Generalized spike-and-slab priors for Bayesian group feature selection using expectation propagation , 2013, J. Mach. Learn. Res..

[49]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[50]  Stephen M. Smith,et al.  The future of FMRI connectivity , 2012, NeuroImage.

[51]  Jeff H. Duyn,et al.  The future of ultra-high field MRI and fMRI for study of the human brain , 2012, NeuroImage.

[52]  John D. Van Horn,et al.  Circular representation of human cortical networks for subject and population-level connectomic visualization , 2012, NeuroImage.

[53]  W. Penny,et al.  Changes in Auditory Feedback Connections Determine the Severity of Speech Processing Deficits after Stroke , 2012, The Journal of Neuroscience.

[54]  Kaustubh Supekar,et al.  Estimation of functional connectivity in fMRI data using stability selection-based sparse partial correlation with elastic net penalty , 2012, NeuroImage.

[55]  Karl J. Friston,et al.  Computational psychiatry , 2012, Trends in Cognitive Sciences.

[56]  William D. Penny,et al.  Comparing Dynamic Causal Models using AIC, BIC and Free Energy , 2012, NeuroImage.

[57]  Timothy O. Laumann,et al.  Functional Network Organization of the Human Brain , 2011, Neuron.

[58]  Karl J. Friston,et al.  Generalised filtering and stochastic DCM for fMRI , 2011, NeuroImage.

[59]  Klaas E. Stephan,et al.  Dynamic causal modelling: A critical review of the biophysical and statistical foundations , 2011, NeuroImage.

[60]  Karl J. Friston,et al.  Effective connectivity: Influence, causality and biophysical modeling , 2011, NeuroImage.

[61]  Sara van de Geer,et al.  Statistics for High-Dimensional Data: Methods, Theory and Applications , 2011 .

[62]  Joachim M. Buhmann,et al.  Generative Embedding for Model-Based Classification of fMRI Data , 2011, PLoS Comput. Biol..

[63]  Karl J. Friston Functional and Effective Connectivity: A Review , 2011, Brain Connect..

[64]  M. Frank,et al.  From reinforcement learning models to psychiatric and neurological disorders , 2011, Nature Neuroscience.

[65]  Mark W. Woolrich,et al.  Network modelling methods for FMRI , 2011, NeuroImage.

[66]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[67]  Joachim M. Buhmann,et al.  The Balanced Accuracy and Its Posterior Distribution , 2010, 2010 20th International Conference on Pattern Recognition.

[68]  Steen Moeller,et al.  Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI , 2010, Magnetic resonance in medicine.

[69]  Catie Chang,et al.  Time–frequency dynamics of resting-state brain connectivity measured with fMRI , 2010, NeuroImage.

[70]  Anil K. Seth,et al.  A MATLAB toolbox for Granger causal connectivity analysis , 2010, Journal of Neuroscience Methods.

[71]  Russell A. Poldrack,et al.  Six problems for causal inference from fMRI , 2010, NeuroImage.

[72]  Karl J. Friston,et al.  Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models , 2009, Physica D. Nonlinear phenomena.

[73]  Karl J. Friston,et al.  Tractography-based priors for dynamic causal models , 2009, NeuroImage.

[74]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[75]  Karl J. Friston,et al.  Bayesian model selection for group studies , 2009, NeuroImage.

[76]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[77]  O Sporns,et al.  Predicting human resting-state functional connectivity from structural connectivity , 2009, Proceedings of the National Academy of Sciences.

[78]  Karl J. Friston,et al.  Nonlinear Dynamic Causal Models for Fmri Nonlinear Dynamic Causal Models for Fmri Nonlinear Dynamic Causal Models for Fmri , 2022 .

[79]  Suzanne T. Witt,et al.  Functional neuroimaging correlates of finger-tapping task variations: An ALE meta-analysis , 2008, NeuroImage.

[80]  Simon B. Eickhoff,et al.  Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM , 2008, NeuroImage.

[81]  K. Pruessmann,et al.  Spatiotemporal magnetic field monitoring for MR , 2008, Magnetic resonance in medicine.

[82]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[83]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[84]  Karl J. Friston,et al.  Dynamic causal modelling for fMRI: A two-state model , 2008, NeuroImage.

[85]  Karl J. Friston,et al.  Comparing hemodynamic models with DCM , 2007, NeuroImage.

[86]  Olaf Sporns,et al.  Network structure of cerebral cortex shapes functional connectivity on multiple time scales , 2007, Proceedings of the National Academy of Sciences.

[87]  Karl J. Friston,et al.  Variational free energy and the Laplace approximation , 2007, NeuroImage.

[88]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[89]  Olaf Sporns,et al.  The small world of the cerebral cortex , 2007, Neuroinformatics.

[90]  S. Bressler,et al.  Large-scale visuomotor integration in the cerebral cortex. , 2007, Cerebral cortex.

[91]  Karl J. Friston,et al.  Synaptic Plasticity and Dysconnection in Schizophrenia , 2006, Biological Psychiatry.

[92]  Karl J. Friston,et al.  Dynamic causal modeling of evoked responses in EEG and MEG , 2006, NeuroImage.

[93]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[94]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[95]  Rainer Goebel,et al.  Mapping directed influence over the brain using Granger causality and fMRI , 2005, NeuroImage.

[96]  G. Porter,et al.  The Comprehensive Aphasia Test , 2005 .

[97]  Karl J. Friston,et al.  Modelling functional integration: a comparison of structural equation and dynamic causal models , 2004, NeuroImage.

[98]  Gereon R. Fink,et al.  Human medial intraparietal cortex subserves visuomotor coordinate transformation , 2004, NeuroImage.

[99]  Klaas Enno Stephan,et al.  On the role of general system theory for functional neuroimaging , 2004, Journal of anatomy.

[100]  Karl J. Friston,et al.  Comparing dynamic causal models , 2004, NeuroImage.

[101]  Rainer Goebel,et al.  Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. , 2003, Magnetic resonance imaging.

[102]  Klaas E. Stephan,et al.  Network participation indices: characterizing component roles for information processing in neural networks , 2003, Neural Networks.

[103]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[104]  Karl J. Friston,et al.  Multivariate Autoregressive Modelling of fMRI time series , 2003 .

[105]  J. Fuster Cortex and mind : unifying cognition , 2003 .

[106]  David Maxwell Chickering,et al.  Optimal Structure Identification With Greedy Search , 2002, J. Mach. Learn. Res..

[107]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[108]  G. Rizzolatti,et al.  The Cortical Motor System , 2001, Neuron.

[109]  N. Kanwisher,et al.  Neuroimaging of cognitive functions in human parietal cortex , 2001, Current Opinion in Neurobiology.

[110]  H. Frauenfelder,et al.  The Energy Landscape , 2001 .

[111]  Karl J. Friston,et al.  Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics , 2000, NeuroImage.

[112]  G Tononi,et al.  Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. , 2000, Cerebral cortex.

[113]  William D. Penny,et al.  Bayesian neural networks for classification: how useful is the evidence framework? , 1999, Neural Networks.

[114]  Xerox,et al.  The Small World , 1999 .

[115]  T. Redpath Signal-to-noise ratio in MRI. , 1998, The British journal of radiology.

[116]  R. Buxton,et al.  Dynamics of blood flow and oxygenation changes during brain activation: The balloon model , 1998, Magnetic resonance in medicine.

[117]  R. Murray,et al.  The dysplastic net hypothesis: an integration of developmental and dysconnectivity theories of schizophrenia , 1997, Schizophrenia Research.

[118]  C. Büchel,et al.  Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. , 1997, Cerebral cortex.

[119]  R A Andersen,et al.  Multimodal integration for the representation of space in the posterior parietal cortex. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[120]  K. Zilles,et al.  Functions and structures of the motor cortices in humans , 1996, Current Opinion in Neurobiology.

[121]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[122]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[123]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited , 1995, NeuroImage.

[124]  Karl J. Friston,et al.  Schizophrenia: a disconnection syndrome? , 1995, Clinical neuroscience.

[125]  G. Edelman,et al.  A measure for brain complexity: relating functional segregation and integration in the nervous system. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[126]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[127]  S. Shipp,et al.  The functional logic of cortical connections , 1988, Nature.

[128]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[129]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[130]  G. Dunn,et al.  An Introduction to Mathematical Taxonomy , 1983 .

[131]  John Henry Melzer What is functional logic , 1952 .