Small-Sample Quantile Estimators in a Large Nonparametric Model

The large nonparametric model in this note is a statistical model with the family ℱ of all continuous and strictly increasing distribution functions. In the abundant literature of the subject, there are many proposals for nonparametric estimators that are applicable in the model. Typically the kth order statistic X k:n is taken as a simplest estimator, with k = [nq], or k = [(n + 1)q], or k = [nq] + 1, etc. Often a linear combination of two consecutive order statistics is considered. In more sophisticated constructions, different L-statistics (e.g., Harrel–Davis, Kaigh–Lachenbruch, Bernstein, kernel estimators) are proposed. Asymptotically the estimators do not differ substantially, but if the sample size n is fixed, which is the case of our concern, differences may be serious. A unified treatment of quantile estimators in the large, nonparametric statistical model is developed.