Descriptional Complexity of Machines with Limited Resources
暂无分享,去创建一个
Andreas Malcher | Jonathan Goldstine | Hing Leung | Detlef Wotschke | Martin Kappes | Chandra M. R. Kintala | C. Kintala | Jonathan Goldstine | H. Leung | Martin Kappes | Andreas Malcher | D. Wotschke
[1] Michael Sipser,et al. Lower bounds on the size of sweeping automata , 1979, J. Comput. Syst. Sci..
[2] Carlo Mereghetti,et al. Converting two-way nondeterministic unary automata into simpler automata , 2003, Theor. Comput. Sci..
[3] Mariëlle Stoelinga,et al. An Introduction to Probabilistic Automata , 2002, Bull. EATCS.
[4] Juris Hartmanis,et al. On Gödel Speed-Up and Succinctness of Language Representations , 1983, Theor. Comput. Sci..
[5] Detlef Wotschke,et al. Concurrent Conciseness of Degree, Probabilistic, Nondeterministic and Deterministic Finite Automata (Extended Abstract) , 1986, STACS.
[6] Jean-Camille Birget. Positional Simulation of Two-Way Automata: Proof of a Conjecture of R. Kannan and Generalizations , 1992, J. Comput. Syst. Sci..
[7] Jean-Camille Birget,et al. Intersection and Union of Regular Languages and State Complexity , 1992, Inf. Process. Lett..
[8] Jonathan Goldstine,et al. On Measuring Nondeterminism in Regular Languages , 1990, Inf. Comput..
[9] Harry B. Hunt,et al. On the Equivalence and Containment Problems for Unambiguous Regular Expressions, Regular Grammars and Finite Automata , 1985, SIAM J. Comput..
[10] Ravi Kannan,et al. Alternation and the power of nondeterminism , 1983, STOC.
[11] Andrzej Ehrenfeucht,et al. Complexity measures for regular expressions , 1974, STOC '74.
[12] Norbert Blum. On Parsing LL-Languages , 1998, Workshop on Implementing Automata.
[13] Detlef Wotschke,et al. Amounts of nondeterminism in finite automata , 1980, Acta Informatica.
[14] Jörg R. Weimar,et al. Simulation with Cellular Automata , 2003 .
[15] Ashwin Nayak,et al. Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[16] Daniel Brand,et al. On Communicating Finite-State Machines , 1983, JACM.
[17] Andris Ambainis,et al. 1-way quantum finite automata: strengths, weaknesses and generalizations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[18] Gheorghe Paun,et al. Grammar Systems , 1997, Handbook of Formal Languages.
[19] Stefania Bandini,et al. Cellular automata: From a theoretical parallel computational model to its application to complex systems , 2001, Parallel Comput..
[20] Mark-Jan Nederhof,et al. Size/lookahead tradeoff for LL(k)-grammars , 2001, Inf. Process. Lett..
[21] Sheng Yu,et al. The State Complexities of Some Basic Operations on Regular Languages , 1994, Theor. Comput. Sci..
[22] Max H. Garzon,et al. Models of Massive Parallelism , 1995, Texts in Theoretical Computer Science. An EATCS Series.
[23] Margherita Napoli,et al. Succinctness of Descriptions of SBTA-Languages , 1997, Theor. Comput. Sci..
[24] Thomas Wilke,et al. Translating Regular Expressions into Small epsilon-Free Nondeterministic Finite Automata , 1997, STACS.
[25] Gheorghe Paun,et al. Computing with Membranes , 2000, J. Comput. Syst. Sci..
[26] Tao Jiang,et al. Minimal NFA Problems are Hard , 1991, SIAM J. Comput..
[27] Oscar H. Ibarra,et al. Relating the Type of Ambiguity of Finite Automata to the Succinctness of Their Representation , 1989, SIAM J. Comput..
[28] Martin Kappes. Descriptional Complexity of Deterministic Finite Automata with Multiple Initial States , 2000, J. Autom. Lang. Comb..
[29] Hartmut Klauck. Über beschränkte Interaktion in der Kommunikationskomplexität , 2000 .
[30] Azaria Paz,et al. Probabilistic automata , 2003 .
[31] Hing Leung. On finite automata with limited nondeterminism , 1998, Acta Informatica.
[32] Derick Wood,et al. Pumping and Pushdown Machines , 1994, RAIRO Theor. Informatics Appl..
[33] Juraj Hromkovic,et al. On the Power of Las Vegas for One-Way Communication Complexity, OBDDs, and Finite Automata , 2001, Inf. Comput..
[34] Hing Leung,et al. On the size of parsers and LR(k)-grammars , 2000, Theor. Comput. Sci..
[35] Hartmut Klauck,et al. Lower bounds for computation with limited nondeterminism , 1998, Proceedings. Thirteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat. No.98CB36247).
[36] Marek Chrobak,et al. Finite Automata and Unary Languages , 1986, Theor. Comput. Sci..
[37] E. F. Codd,et al. Cellular automata , 1968 .
[38] Anne Brüggemann-Klein,et al. Regular Expressions into Finite Automata , 1992, Theor. Comput. Sci..
[39] A. R. Meyer,et al. Economy of Description by Automata, Grammars, and Formal Systems , 1971, SWAT.
[40] Giovanni Pighizzini,et al. Tight Bounds on the Simulation of Unary Probabilistic Automata by Deterministic Automata , 2001, J. Autom. Lang. Comb..
[41] Patrick C. Fischer,et al. Computations with a restricted number of nondeterministic steps (Extended Abstract) , 1977, STOC '77.
[42] Piotr Berman. A Note on Sweeping Automata , 1980, ICALP.
[43] Reinhard Klemm,et al. Formal limits on determining reliabilities of component-based software systems , 2000, Proceedings 11th International Symposium on Software Reliability Engineering. ISSRE 2000.
[44] Jonathan Goldstine,et al. On the Relation between Ambiguity and Nondeterminism in Finite Automata , 1992, Inf. Comput..
[45] Dana S. Scott,et al. Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..
[46] Rusins Freivalds. Complexity of Probabilistic Versus Deterministic Automata , 1991, Baltic Computer Science.
[47] Jozef Gruska,et al. Descriptional Complexity Issues in Quantum Computing , 2000, J. Autom. Lang. Comb..
[48] Martin Kutrib. Automata arrays and context-free languages , 2001, Where Mathematics, Computer Science, Linguistics and Biology Meet.
[49] Patrick C. Fischer,et al. Refining Nondeterminism in Relativized Polynomial-Time Bounded Computations , 1980, SIAM J. Comput..
[50] Lawrence T. Kou,et al. Multiple-Entry Finite Automata , 1974, J. Comput. Syst. Sci..
[51] Sheng Yu,et al. State Complexity of Regular Languages: Finite versus Infinite , 2000, Finite Versus Infinite.
[52] Andreas Malcher. On One-Way Cellular Automata with a Fixed Number of Cells , 2003, Fundam. Informaticae.
[53] Leslie G. Valiant,et al. A Note on the Succinctness of Descriptions of Deterministic Languages , 1976, Inf. Control..
[54] Juris Hartmanis. On the Succinctness of Different Representations of Languages , 1980, SIAM J. Comput..
[55] Hing Leung. Tight Lower Bounds on the Size of Sweeping Automata , 2001, J. Comput. Syst. Sci..
[56] Rusins Freivalds,et al. Probabilistic Two-Way Machines , 1981, MFCS.
[57] Franco Bagnoli,et al. Cellular Automata , 2002, Lecture Notes in Computer Science.
[58] Silvio Micali,et al. Two-Way Deterministic Finite Automata are Exponentially More Succinct Than Sweeping Automata , 1981, Inf. Process. Lett..
[59] Ernst L. Leiss,et al. Succint Representation of Regular Languages by Boolean Automata , 1981, Theor. Comput. Sci..
[60] Karl R. Abrahamson. Succinct Representation of Regular Sets Using Gotos and Boolean Variables , 1987, J. Comput. Syst. Sci..
[61] FRANK R. MOORE,et al. On the Bounds for State-Set Size in the Proofs of Equivalence Between Deterministic, Nondeterministic, and Two-Way Finite Automata , 1971, IEEE Transactions on Computers.
[62] Jonathan Goldstine,et al. Systems of communicating finite-state machines as a distributed alternative to finite-state machines , 1996 .
[63] Andris Ambainis. The Complexity of Probabilistic versus Deterministic Finite Automata , 1996, ISAAC.
[64] Christian Herzog. Die Rolle des Nichtdeterminismus in kontextfreien Sprachen , 1999 .
[65] Paulo A. S. Veloso,et al. Some Remarks on Multiple-Entry Finite Automata , 1979, J. Comput. Syst. Sci..
[66] John C. Shepherdson,et al. The Reduction of Two-Way Automata to One-Way Automata , 1959, IBM J. Res. Dev..
[67] Thomas Worsch,et al. Simulation of cellular automata , 1999, Future Gener. Comput. Syst..
[68] Gheorghe Paun,et al. Regulated Rewriting in Formal Language Theory , 1989 .
[69] Sheng Yu,et al. State Complexity of Regular Languages , 2001, J. Autom. Lang. Comb..
[70] Ernst L. Leiss. Succinct Representation of Regular Languages by Boolean Automata II , 1985, Theor. Comput. Sci..
[71] Carlo Mereghetti,et al. Optimal Simulations Between Unary Automata , 1998, STACS.
[72] Michael R. Lyu,et al. Handbook of software reliability engineering , 1996 .
[73] Russell W. Quong,et al. LL and LR translators need k>1 lookahead , 1996, SIGP.
[74] E. M. Schmidt. Succinctness of Descriptions of Context-Free, Regular and Finite Languages , 1977 .
[75] Juraj Hromkovic,et al. On the power of Las Vegas II: Two-way finite automata , 1999, Theor. Comput. Sci..
[76] William J. Sakoda,et al. Nondeterminism and the size of two way finite automata , 1978, STOC.
[77] Harry B. Hunt,et al. Economy of description by parsers, DPDA's, and PDA's , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).
[78] Jeffrey D. Ullman,et al. Introduction to Automata Theory, Languages and Computation , 1979 .
[79] Sampath Kannan,et al. Communicating Hierarchical State Machines , 1999, ICALP.
[80] Sheng Yu,et al. NFA to DFA Transformation for Finite Languages over Arbitrary Alphabets , 1998, J. Autom. Lang. Comb..
[81] Hartmut Klauck,et al. Communication Complexity Method for Measuring Nondeterminism in Finite Automata , 2002, Inf. Comput..
[82] Rusins Freivalds,et al. Running Time to Recognize Nonregular Languages by 2-Way Probabilistic Automata , 1991, ICALP.
[83] Christian Herzog. Pushdown Automata with Bounded Nondeterminism and Bounded Ambiguity , 1997, Theor. Comput. Sci..
[84] Erik Meineche Schmidt,et al. Succinctness of Descriptions of Unambiguous Context-Free Languages , 1977, SIAM J. Comput..
[85] Andreas Malcher. Descriptional Complexity of Cellular Automata and Decidability Questions , 2001, DCFS.
[86] David I. Lewin,et al. DNA computing , 2002, Comput. Sci. Eng..
[87] Sheng Yu,et al. Measures of Nondeterminism for Pushdown Automata , 1994, J. Comput. Syst. Sci..
[88] Moshe Y. Vardi. A Note on the Reduction of Two-Way Automata to One-Way Automata , 1989, Inf. Process. Lett..
[89] Karel Culik,et al. State Complexity of Basic Operations on Finite Languages , 1999, WIA.