Pre-excitatory pause in frontal eye field responses

Abstract. We report a new characteristic of the presaccadic activity of the neurons in the frontal eye field of macaque monkeys. A fraction of neurons exhibited a significant pause in discharge rate preceding the excitatory visual or movement-related response. This pre-excitatory pause, which has been observed in striate and extrastriate visual areas, may represent a resetting of neural activation for detailed visual processing or saccade preparation.

[1]  M. Ito,et al.  Visual evoked response of single cells and of the EEG in primary visual area of the cat. , 1969, Journal of neurophysiology.

[2]  M. Goldberg,et al.  Behavioral enhancement of visual responses in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades. , 1981, Journal of neurophysiology.

[3]  A. Mikami,et al.  Visual response properties of dorsolateral prefrontal neurons during visual fixation task. , 1982, Journal of neurophysiology.

[4]  R. Wurtz,et al.  Visual responses of inferior temporal neurons in awake rhesus monkey. , 1983, Journal of neurophysiology.

[5]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. , 1983, Journal of neurophysiology.

[6]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  M. Schlag-Rey,et al.  Visuomotor functions of central thalamus in monkey. II. Unit activity related to visual events, targeting, and fixation. , 1984, Journal of neurophysiology.

[8]  C. Bruce,et al.  Primate frontal eye fields. I. Single neurons discharging before saccades. , 1985, Journal of neurophysiology.

[9]  L A Krubitzer,et al.  Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys II. cortical connections , 1986, The Journal of comparative neurology.

[10]  H. Spitzer,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. I. Response characteristics. , 1987, Journal of neurophysiology.

[11]  M E Goldberg,et al.  Frontal eye field efferents in the macaque monkey: I. Subcortical pathways and topography of striatal and thalamic terminal fields , 1988, The Journal of comparative neurology.

[12]  M E Goldberg,et al.  Participation of prefrontal neurons in the preparation of visually guided eye movements in the rhesus monkey. , 1989, Journal of neurophysiology.

[13]  T. Nealey,et al.  Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  M. J. Friedlander,et al.  The time course and amplitude of EPSPs evoked at synapses between pairs of CA3/CA1 neurons in the hippocampal slice , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  P. Goldman-Rakic,et al.  Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. , 1990, Journal of neurophysiology.

[16]  K. Stratford,et al.  Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[18]  John H. R. Maunsell,et al.  Visual response latencies in striate cortex of the macaque monkey. , 1992, Journal of neurophysiology.

[19]  B. Connors,et al.  Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  G. Orban,et al.  Cue-invariant shape selectivity of macaque inferior temporal neurons. , 1993, Science.

[21]  M. Segraves,et al.  Primate frontal eye field activity during natural scanning eye movements. , 1994, Journal of neurophysiology.

[22]  C. Bruce,et al.  Physiological correlate of fixation disengagement in the primate's frontal eye field. , 1994, Journal of neurophysiology.

[23]  J. Bullier,et al.  Visual latencies in areas V1 and V2 of the macaque monkey , 1995, Visual Neuroscience.

[24]  J. Schall,et al.  Saccade target selection in frontal eye field of macaque. I. Visual and premovement activation , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  G. Orban,et al.  Selectivity of macaque inferior temporal neurons for partially occluded shapes , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  J. Bullier,et al.  Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  J. Schall,et al.  Neural Control of Voluntary Movement Initiation , 1996, Science.

[28]  N. P. Bichot,et al.  Visual feature selectivity in frontal eye fields induced by experience in mature macaques , 1996, Nature.

[29]  M P Young,et al.  Indeterminate Organization of the Visual System , 1996, Science.

[30]  N. P. Bichot,et al.  Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. , 1996, Journal of neurophysiology.

[31]  J. Schall Visuomotor Areas of the Frontal Lobe , 1997 .

[32]  Jean Bullier,et al.  The Timing of Information Transfer in the Visual System , 1997 .

[33]  C. Schroeder,et al.  A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. , 1998, Cerebral cortex.

[34]  J. Schall,et al.  Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity. , 1998, Journal of neurophysiology.

[35]  R. Wurtz,et al.  Frontal eye field neurons orthodromically activated from the superior colliculus. , 1998, Journal of neurophysiology.

[36]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[37]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[38]  M. Shadlen,et al.  Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque , 1999, Nature Neuroscience.

[39]  J. Schall,et al.  Neural selection and control of visually guided eye movements. , 1999, Annual review of neuroscience.

[40]  Jeffrey D. Schall,et al.  The detection of visual signals by macaque frontal eye field during masking , 1999, Nature Neuroscience.

[41]  N. P. Bichot,et al.  Effects of similarity and history on neural mechanisms of visual selection , 1999, Nature Neuroscience.

[42]  H. Kennedy,et al.  Laminar Distribution of Neurons in Extrastriate Areas Projecting to Visual Areas V1 and V4 Correlates with the Hierarchical Rank and Indicates the Operation of a Distance Rule , 2000, The Journal of Neuroscience.

[43]  J. Schall,et al.  Antecedents and correlates of visual detection and awareness in macaque prefrontal cortex , 2000, Vision Research.