An Improved Reachability Analysis Method for Strongly Linear Hybrid Systems (Extended Abstract)

This paper addresses the exact computation of the set of reachable states of a strongly linear hybrid system. It proposes an approach that is an extension of classical state-space exploration. This approach uses a new operation, based on a cycle analysis in the control graph of the system, for generating sets of reachable states, as well as a powerful representation system for sets of values. The method broadens the range of hybrid systems for which a finite and exact representation of the set of reachable states can be computed. In particular, the state-space exploration may be performed even if the set of variable values reachable at a given control location cannot be expressed as a finite union of convex regions. The technique is illustrated on a very simple example.

[1]  Thomas A. Henzinger,et al.  A User Guide to HyTech , 1995, TACAS.

[2]  T. Henzinger,et al.  Automatic Symbolic Veri cation of Embedded Systems , 1996 .

[3]  Thomas A. Henzinger,et al.  HYTECH: the next generation , 1995, Proceedings 16th IEEE Real-Time Systems Symposium.

[4]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[5]  Bernard Boigelot Symbolic Methods for Exploring Infinite State Spaces , 1998 .

[6]  Rajeev Alur,et al.  Model-Checking in Dense Real-time , 1993, Inf. Comput..

[7]  Pierre Wolper,et al.  On the Expressiveness of Real and Integer Arithmetic Automata (Extended Abstract) , 1998, ICALP.

[8]  Pravin Varaiya,et al.  What's decidable about hybrid automata? , 1995, STOC '95.

[9]  Wang Yi,et al.  UPPAAL - a Tool Suite for Automatic Verification of Real-Time Systems , 1996, Hybrid Systems.

[10]  Patrice Godefroid,et al.  Symbolic Verification of Communication Protocols with Infinite State Spaces using QDDs , 1999, Formal Methods Syst. Des..

[11]  Thomas A. Henzinger,et al.  Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems , 1992, Hybrid Systems.

[12]  Patrice Godefroid,et al.  Symbolic Verification of Communication Protocols with Infinite State Spaces Using QDDs (Extended Abstract) , 1996, CAV.

[13]  Satoshi Yamane,et al.  The symbolic model-checking for real-time systems , 1996, Proceedings of the Eighth Euromicro Workshop on Real-Time Systems.

[14]  Conrado Daws,et al.  Two examples of verification of multirate timed automata with Kronos , 1995, Proceedings 16th IEEE Real-Time Systems Symposium.

[15]  Joseph Sifakis,et al.  Integration Graphs: A Class of Decidable Hybrid Systems , 1992, Hybrid Systems.

[16]  Pierre Wolper,et al.  Symbolic Verification with Periodic Sets , 1994, CAV.

[17]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[18]  O. Maler,et al.  Hardware timing verification using KRONOS , 1996, Proceedings of the Seventh Israeli Conference on Computer Systems and Software Engineering.

[19]  Stavros Tripakis,et al.  The Tool KRONOS , 1996, Hybrid Systems.

[20]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[21]  Pierre Wolper,et al.  An Automata-Theoretic Approach to Presburger Arithmetic Constraints (Extended Abstract) , 1995, SAS.

[22]  S. Sieber On a decision method in restricted second-order arithmetic , 1960 .

[23]  Thomas A. Henzinger,et al.  Model Checking Strategies for Linear Hybrid Systems , 1994 .

[24]  Thomas A. Henzinger,et al.  HYTECH: The Cornell HYbrid TECHnology Tool , 1994, Hybrid Systems.

[25]  Thomas A. Henzinger,et al.  Automatic Symbolic Verification of Embedded Systems , 1996, IEEE Trans. Software Eng..

[26]  Thomas A. Henzinger,et al.  Symbolic Model Checking for Real-Time Systems , 1994, Inf. Comput..

[27]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..