Fracture of ceramics and glasses

The rich variety of fracture behavior exhibited by glasses and ceramic materials is reviewed with particular emphasis on the understanding gained through the use of deliberately introduced, controlled cracks. After a brief summary of the mechanics of indentation cracks four major topics are discussed, the structure of crack tips, environment assisted crack growth, high temperature fracture and the toughening of ceramics. Resolution of the sharp vs blunt crack dilemma is presented together with recent microscopy observations of crack tips in brittle solids. In describing fracture in polycrystalline ceramics we explore some of the complexities beyond the simple Griffith behavior relating strength to flaw size, and show how the scale of the microstructure with respect to the crack length affects the observed toughness. It is shown that the interaction of a crack with the microstructure provides a unifying theme for interpreting much of the current work in the literature and leads to important concepts discussed here, such as the discrete-continuum transition, R-curve behavior, toughening due to crack deflection and crack bridging, transformation toughening and stress-induced microcrack toughening.

[1]  A. Evans,et al.  Crack deflection processes—II. Experiment , 1983 .

[2]  A. Evans,et al.  High temperature failure mechanisms in ceramics , 1980 .

[3]  Anthony G. Evans,et al.  Mechanics of Transformation‐Toughening in Brittle Materials , 1982 .

[4]  K. Prewo Tension and flexural strength of silicon carbide fibre-reinforced glass ceramics , 1986 .

[5]  J. Willis,et al.  A comparison of the fracture criteria of griffith and barenblatt , 1967 .

[6]  M. Ashby,et al.  Finger-like crack growth in solids and liquids , 1976 .

[7]  A. C. Gonzalez,et al.  Sharp vs Blunt Crack Hypotheses in the Strength of Glass: A Critical Study Using Indentation Flaws , 1985 .

[8]  P. Becher Slow crack growth behavior in transformation-toughened Al2O3-ZrO2(Y2O3) ceramics , 1983 .

[9]  D. Maugis,et al.  Subcritical crack growth, surface energy, fracture toughness, stick-slip and embrittlement , 1985 .

[10]  D. Clarke On the Equilibrium Thickness of Intergranular Glass Phases in Ceramic Materials , 1987 .

[11]  R. Cook,et al.  Microstructure-strength properties in ceramics. I: Effect of crack size on toughness , 1985 .

[12]  U. Engel,et al.  Strength improvement of cemented carbides by hot isostatic pressing (HIP) , 1978 .

[13]  R. E. Mould Strength and Static Fatigue of Abraded Glass Under Controlled Ambient Conditions: III, Aging of Fresh Abrasions , 1960 .

[14]  K. Prewo,et al.  High-strength silicon carbide fibre-reinforced glass-matrix composites , 1980 .

[15]  Arthur H. Heuer,et al.  Science and Technology of Zirconia , 1981 .

[16]  Karl M. Prewo,et al.  Silicon carbide fibre reinforced glass-ceramic matrix composites exhibiting high strength and toughness , 1982 .

[17]  A. Evans,et al.  Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System , 1980 .

[18]  James R. Rice,et al.  Ductile versus brittle behaviour of crystals , 1974 .

[19]  B. Bunker,et al.  Stress Corrosion of Ionic and Mixed Ionic/Covalent Solids , 1986 .

[20]  B. V. Derjaguin,et al.  Effect of contact deformations on the adhesion of particles , 1975 .

[21]  Anthony G. Evans,et al.  Crack deflection processes—I. Theory , 1983 .

[22]  P. Gennes Wetting: statics and dynamics , 1985 .

[23]  A. Evans,et al.  The mechanics of matrix cracking in brittle-matrix fiber composites , 1985 .

[24]  P. Becher Toughening behavior in ceramics associated with the transformation of tetragonal ZrO2 , 1986 .

[25]  Sheldon M. Wiederhorn,et al.  Influence of Water Vapor on Crack Propagation in Soda‐Lime Glass , 1967 .

[26]  Bernard Schwartz,et al.  Review of multilayer ceramics for microelectronic packaging , 1984 .

[27]  D. Wolf Effect of interatomic potential on the calculated energy and structure of high-angle coincident site grain boundaries—II. (100) Twist boundaries in Cu, Ag and Au , 1984 .

[28]  M. Takemori,et al.  Fatigue crack advance mechanisms in polymers: rubber toughening mechanisms in blends of poly(2,6-dimethyl -1,4-phenylene oxide) and polystyrene , 1983 .

[29]  A. Evans,et al.  High‐Temperature Failure of Polycrystalline Alumina: I, Crack Nucleation , 1984 .

[30]  B. Bunker,et al.  Slow fracture model based on strained silicate structures , 1984 .

[31]  B. Hughes,et al.  A physically consistent theory of fracture in a brittle solid , 1987 .

[32]  J. E. Sinclair The influence of the interatomic force law and of kinks on the propagation of brittle cracks , 1975 .

[33]  J. Rice,et al.  The shape of intergranular creep cracks gro′ing by surface diffusion , 1973 .

[34]  Brian R. Lawn,et al.  Residual stress effects in sharp contact cracking , 1979 .

[35]  M. Swain Inelastic deformation of MgPSZ and its significance for strength-toughness relationship of zirconia toughened ceramics , 1985 .

[36]  David R. Clarke,et al.  Measurement of the Crystallographically Transformed Zone Produced by Fracture in Ceramics Containing Tetragonal Zirconia , 1982 .

[37]  J. A. Greenwood,et al.  The mechanics of adhesion of viscoelastic solids , 1981 .

[38]  G. W. Groves,et al.  The propagation of cracks in composites consisting of ductile wires in a brittle matrix , 1979 .

[39]  A. Heuer,et al.  Transformation and Microcrack Toughening as Complementary Processes in ZrO2-Toughened Al2O3 , 1986 .

[40]  Michael V. Swain,et al.  Nickel sulphide inclusions in glass: an example of microcracking induced by a volumetric expanding phase change , 1981 .

[41]  B. Lawn,et al.  Electron microscopy of microcracking about indentations in aluminium oxide and silicon carbide , 1975 .

[42]  Abdelsamie Moet,et al.  Thermodynamics of translational crack layer propagation , 1985 .

[43]  T. Michalske,et al.  A Molecular Mechanism for Stress Corrosion in Vitreous Silica , 1983 .

[44]  A. Evans,et al.  Matrix fracture in fiber-reinforced ceramics , 1986 .

[45]  R. M. Cannon,et al.  Toughening of brittle solids by martensitic transformations , 1986 .

[46]  F. Lange Transformation toughening , 1982 .

[47]  A. Evans,et al.  Influence of Shear Bands on Creep Rupture in Ceramics , 1985 .

[48]  U. F. Zackay High-strength Materials , 1965 .

[49]  Anthony Kelly,et al.  Ductile and brittle crystals , 1967 .

[50]  A. Argon,et al.  Growth of crazes in glassy polymers , 1977 .

[51]  A. Evans,et al.  High temperature failure initiation in liquid phase sintered materials , 1983 .

[52]  John R. Rice,et al.  Thermodynamics of the quasi-static growth of Griffith cracks , 1978 .

[53]  A. Evans,et al.  High-Temperature Stress Corrosion Cracking in Ceramics , 1987 .

[54]  B. I. Davis,et al.  Compressive creep of Si3N4/MgO alloys , 1980 .

[55]  A. Evans,et al.  Overview 14 Creep fracture in ceramic polycrystals—II. effects of inhomogeneity on creep rupture , 1981 .

[56]  K. Prewo A compliant, high failure strain, fibre-reinforced glass-matrix composite , 1982 .

[57]  A. Drescher,et al.  Photoelastic verification of a mechanical model for the flow of a granular material , 1972 .

[58]  A. Evans,et al.  High‐Temperature Failure of Polycrystalline Alumina: III, Failure Times , 1984 .

[59]  Robert D. Maurer,et al.  Strength of fiber optical waveguides , 1975 .

[60]  A. Evans,et al.  On the toughening of ceramics by strong reinforcements , 1986 .

[61]  John W. Hutchinson,et al.  Continuum theory of dilatant transformation toughening in ceramics , 1983 .

[62]  D. Clarke High-temperature deformation of a polycrystalline alumina containing an intergranular glass phase , 1985 .

[63]  J. Rice,et al.  Suppression of Cavity Formation in Ceramics: Prospects for Superplasticity , 1980 .

[64]  R. Steinbrech,et al.  Increase of crack resistance during slow crack growth in Al2O3 bend specimens , 1983 .

[65]  B. Lawn,et al.  Microindentation Techniques in Materials Science and Engineering , 1986 .

[66]  D. Haneman,et al.  Atomic Mating of Germanium Surfaces , 1967 .

[67]  L. Rose,et al.  Strength Limitations of Transformation-Toughened Zirconia Alloys , 1986 .

[68]  L. Rose A cracked plate repaired by bonded reinforcements , 1982 .

[69]  Theory of chemically assisted fracture , 1980 .

[70]  A. Evans,et al.  Duality in the Creep Rupture of a Polycrystalline Alumina , 1985 .

[71]  S. Wiederhorn,et al.  Nucieation and Growth of Cracks in Vitreous‐Bonded Aluminum Oxide at Elevated Temperatures , 1986 .

[72]  James R. Rice,et al.  Overview no. 2 , 1979 .

[73]  D. Clarke Microfracture in brittle solids resulting from anisotropic shape changes , 1980 .