Electrochemically addressable trisradical rotaxanes organized within a metal–organic framework

Significance This research paper presents a strategy for the organization of artificial molecular switches based on mechanically interlocked molecules within a porous crystalline framework. Once arranged within the pores of the framework, the electronic state of the switches can be altered by the application of an electrochemical potential. This strategy is particularly useful when it comes to integrating dynamic, stimulus-responsive, mechanically interlocked molecules with the robustness and periodicity of porous solids. The findings of the research establish proof-of-concept for the application of postsynthetic transformations of porous crystalline frameworks in the creation of solid-state molecular switches and machines. The organization of trisradical rotaxanes within the channels of a Zr6-based metal–organic framework (NU-1000) has been achieved postsynthetically by solvent-assisted ligand incorporation. Robust ZrIV–carboxylate bonds are forged between the Zr clusters of NU-1000 and carboxylic acid groups of rotaxane precursors (semirotaxanes) as part of this building block replacement strategy. Ultraviolet–visible–near-infrared (UV-Vis-NIR), electron paramagnetic resonance (EPR), and 1H nuclear magnetic resonance (NMR) spectroscopies all confirm the capture of redox-active rotaxanes within the mesoscale hexagonal channels of NU-1000. Cyclic voltammetry measurements performed on electroactive thin films of the resulting material indicate that redox-active viologen subunits located on the rotaxane components can be accessed electrochemically in the solid state. In contradistinction to previous methods, this strategy for the incorporation of mechanically interlocked molecules within porous materials circumvents the need for de novo synthesis of a metal–organic framework, making it a particularly convenient approach for the design and creation of solid-state molecular switches and machines. The results presented here provide proof-of-concept for the application of postsynthetic transformations in the integration of dynamic molecular machines with robust porous frameworks.

[1]  Kelong Zhu,et al.  A molecular shuttle that operates inside a metal-organic framework. , 2015, Nature chemistry.

[2]  Ranjan V. Mannige,et al.  Heterogeneity of functional groups in a metal–organic framework displays magic number ratios , 2015, Proceedings of the National Academy of Sciences.

[3]  G. Wiederrecht,et al.  Metal-organic framework materials for light-harvesting and energy transfer. , 2015, Chemical communications.

[4]  J. Hupp,et al.  MOF functionalization via solvent-assisted ligand incorporation: phosphonates vs carboxylates. , 2015, Inorganic chemistry.

[5]  M. Wasielewski,et al.  Bias-Switchable Permselectivity and Redox Catalytic Activity of a Ferrocene-Functionalized, Thin-Film Metal-Organic Framework Compound. , 2015, The journal of physical chemistry letters.

[6]  Wenbin Lin,et al.  Metal—Organic Frameworks for Artificial Photosynthesis and Photocatalysis , 2014 .

[7]  Joshua Borycz,et al.  Defining the Proton Topology of the Zr6-Based Metal-Organic Framework NU-1000. , 2014, The journal of physical chemistry letters.

[8]  J. F. Stoddart,et al.  Putting mechanically interlocked molecules (MIMs) to work in tomorrow's world. , 2014, Angewandte Chemie.

[9]  Nicolaas A. Vermeulen,et al.  Energetically demanding transport in a supramolecular assembly. , 2014, Journal of the American Chemical Society.

[10]  Michael J. Katz,et al.  Directed Growth of Electroactive Metal‐Organic Framework Thin Films Using Electrophoretic Deposition , 2014, Advanced materials.

[11]  Omar K Farha,et al.  Beyond post-synthesis modification: evolution of metal-organic frameworks via building block replacement. , 2014, Chemical Society reviews.

[12]  Ryan M. Young,et al.  Solid-state characterization and photoinduced intramolecular electron transfer in a nanoconfined octacationic homo[2]catenane. , 2014, Journal of the American Chemical Society.

[13]  J. C. Barnes,et al.  Relative contractile motion of the rings in a switchable palindromic [3]rotaxane in aqueous solution driven by radical-pairing interactions , 2014, Organic & biomolecular chemistry.

[14]  K. Zhu,et al.  Metal-organic frameworks with mechanically interlocked pillars: controlling ring dynamics in the solid-state via a reversible phase change. , 2014, Journal of the American Chemical Society.

[15]  S. Goldup,et al.  Chemical consequences of mechanical bonding in catenanes and rotaxanes: isomerism, modification, catalysis and molecular machines for synthesis. , 2014, Chemical communications.

[16]  D. D’Alessandro,et al.  Radicals in metal–organic frameworks , 2014 .

[17]  Severin T. Schneebeli,et al.  Redox switchable daisy chain rotaxanes driven by radical-radical interactions. , 2014, Journal of the American Chemical Society.

[18]  Omar K Farha,et al.  Versatile functionalization of the NU-1000 platform by solvent-assisted ligand incorporation. , 2014, Chemical communications.

[19]  Nicolaas A. Vermeulen,et al.  Synthesis of Ex(n)Box cyclophanes. , 2013, The Journal of organic chemistry.

[20]  Emmanuel Tylianakis,et al.  Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: synthesis and CO2 adsorption studies. , 2013, Journal of the American Chemical Society.

[21]  Z. Su,et al.  Metal ion directed metal-organic rotaxane frameworks with intrinsic features of self-penetration and interpenetration. , 2013, Chemical communications.

[22]  David Fairen-Jimenez,et al.  Vapor-phase metalation by atomic layer deposition in a metal-organic framework. , 2013, Journal of the American Chemical Society.

[23]  J. F. Stoddart,et al.  Three-dimensional architectures incorporating stereoregular donor-acceptor stacks. , 2013, Chemistry.

[24]  J. C. Barnes,et al.  A Radically Configurable Six-State Compound , 2013, Science.

[25]  J. F. Stoddart,et al.  Mechanical bond-induced radical stabilization. , 2013, Journal of the American Chemical Society.

[26]  V. Vukotic,et al.  Coordination polymers containing rotaxane linkers. , 2012, Chemical Society reviews.

[27]  William R. Dichtel,et al.  High hopes: can molecular electronics realise its potential? , 2012, Chemical Society reviews.

[28]  Kristopher J Harris,et al.  Metal-organic frameworks with dynamic interlocked components. , 2012, Nature chemistry.

[29]  M. Allendorf,et al.  A Roadmap to Implementing Metal—Organic Frameworks in Electronic Devices: Challenges and Critical Directions , 2012 .

[30]  J. F. Stoddart,et al.  Metal-organic frameworks incorporating copper-complexed rotaxanes. , 2012, Angewandte Chemie.

[31]  M. Garcia‐Garibay,et al.  Crystalline molecular machines: function, phase order, dimensionality, and composition. , 2012, Chemical Society reviews.

[32]  Rachel B. Getman,et al.  Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. , 2012, Chemical reviews.

[33]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[34]  J. C. Barnes,et al.  Solution-phase mechanistic study and solid-state structure of a tris(bipyridinium radical cation) inclusion complex. , 2012, Journal of the American Chemical Society.

[35]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[36]  J. F. Stoddart,et al.  Great expectations: can artificial molecular machines deliver on their promise? , 2012, Chemical Society reviews.

[37]  A Alec Talin,et al.  A roadmap to implementing metal-organic frameworks in electronic devices: challenges and critical directions. , 2011, Chemistry.

[38]  William R. Dichtel,et al.  A solid-state switch containing an electrochemically switchable bistable poly[n]rotaxane , 2011 .

[39]  J. F. Stoddart,et al.  A metal-organic framework replete with ordered donor-acceptor catenanes. , 2010, Chemical communications.

[40]  S. Nguyen,et al.  De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. , 2010, Nature chemistry.

[41]  J. F. Stoddart,et al.  Mechanical bond formation by radical templation. , 2010, Angewandte Chemie.

[42]  J. F. Stoddart,et al.  A catenated strut in a catenated metal-organic framework. , 2010, Angewandte Chemie.

[43]  M. Hawthorne,et al.  Symmetry and dynamics of molecular rotors in amphidynamic molecular crystals , 2010, Proceedings of the National Academy of Sciences.

[44]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[45]  J. F. Stoddart,et al.  The Chemistry of the Mechanical Bond , 2009 .

[46]  J. F. Stoddart,et al.  Docking in Metal-Organic Frameworks , 2009, Science.

[47]  Josef Michl,et al.  Molecular rotors and motors: recent advances and future challenges. , 2009, ACS nano.

[48]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[49]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[50]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[51]  J. Hupp,et al.  Better Living Through Nanopore Chemistry , 2005, Science.

[52]  M. Garcia‐Garibay,et al.  Crystalline molecular machines: encoding supramolecular dynamics into molecular structure. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  M. Ratner,et al.  Molecular electronics , 2005 .

[54]  James R Heath,et al.  Whence Molecular Electronics? , 2004, Science.

[55]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[56]  S. J. Loeb,et al.  Channels and cavities lined with interlocked components: metal-based polyrotaxanes that utilize pyridinium axles and crown ether wheels as ligands. , 2003, Angewandte Chemie.

[57]  Tohru Yamamoto,et al.  Two-dimensional molecular electronics circuits. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[58]  Thomas Clifford,et al.  Factors affecting the threading of axle molecules through macrocycles: Binding constants for semirotaxane formation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[59]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[60]  Miwa,et al.  Synthesis of viologens with extended pi-conjugation and their photochromic behavior on near-IR absorption , 2000, The Journal of organic chemistry.

[61]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[62]  A. White,et al.  Studies towards the synthesis of halomon : asymmetric hexafunctionalisation of myrcene † , 2014 .

[63]  Douglas C. Friedman,et al.  Radically enhanced molecular recognition. , 2010, Nature chemistry.

[64]  J. F. Stoddart,et al.  Robust dynamics. , 2010, Nature chemistry.

[65]  Xiaofan Luo,et al.  Molecular Electronics , 2009 .

[66]  Ke Xu,et al.  Ground-state equilibrium thermodynamics and switching kinetics of bistable [2]rotaxanes switched in solution, polymer gels, and molecular electronic devices. , 2005, Chemistry.

[67]  Paul M. S. Monk,et al.  The Viologens: Physicochemical Properties, Synthesis and Applications of the Salts of 4,4'-Bipyridine , 1998 .