Frequency-domain robust control toolbox

A new frequency-domain robust control toolbox is introduced and compared with the robust control toolbox of Matlab. A summary of the theoretical background for H∞ controller design using the spectral models is given. The main advantage of this toolbox is that almost all types of model uncertainties like unmodelled dynamics, multimodel uncertainty, spectral uncertainty and parametric uncertainty can be taken into account without conservatism. As a result, the uncertain parametric or frequency-domain models identified by the identification toolbox of Matlab can be used directly for computing robust controllers. The main commands of the new toolbox are briefly explained and the performance of the designed controllers are illustrated via some sand experimental results.

[1]  Alireza Karimi,et al.  H∞ controller design for spectral MIMO models by convex optimization , 2009, 2009 European Control Conference (ECC).

[2]  Pierre Apkarian,et al.  Nonsmooth H∞ synthesis , 2005, IEEE Trans. Autom. Control..

[3]  Bruce A. Francis,et al.  Feedback Control Theory , 1992 .

[4]  Alireza Karimi,et al.  Fixed-order H∞ controller design for nonparametric models by convex optimization , 2010, Autom..

[5]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[6]  Alireza Karimi,et al.  Robust and Gain-Scheduled PID Controller Design for Condensing Boilers by Linear Programming , 2012 .

[7]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[8]  P. Apkarian,et al.  Nonsmooth H ∞ synthesis , 2005 .

[9]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[10]  Lennart Ljung,et al.  System identification (2nd ed.): theory for the user , 1999 .

[11]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[12]  G. Zames Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .

[13]  Alireza Karimi,et al.  H∞ Controller design for spectral MIMO models by convex optimization☆ , 2010 .

[14]  Keith Glover,et al.  A loop-shaping design procedure using H/sub infinity / synthesis , 1992 .

[15]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.

[16]  Andrew Packard,et al.  The complex structured singular value , 1993, Autom..

[17]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[18]  Theodore E. Djaferis Robust Control Design: A Polynomial Approach , 1995 .

[19]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[20]  Alireza Karimi,et al.  A toolbox for robust PID controller tuning using convex optimization , 2012 .

[21]  Sailes K. Sengijpta Fundamentals of Statistical Signal Processing: Estimation Theory , 1995 .