A new quantum chaotic cuckoo search algorithm for data clustering

Quantum chaotic cuckoo search algorithm is proposed for the data clustering problem.The performance of the proposed approach was assessed on six well known datasets.The Chaos maps and Boundary handling strategy enhance the cuckoo search algorithm.The nonhomogeneous quantum update improves the global search ability.The significant superiority of the proposed algorithm over eight recent algorithms. This paper presents a new quantum chaotic cuckoo search algorithm (QCCS) for data clustering. Recent researches show the superiority of cuckoo search (CS) over traditional meta-heuristic algorithms for clustering problems. Unfortunately, all the cuckoos have identical search behaviours that may lead the algorithm to converge to local optima. Also, the convergence rate is sensitive to initial centroids seeds that are randomly generated.Therefore, the main contribution of this paper is to extend the CS capabilities using nonhomogeneous update inspired by the quantum theory in order to tackle the cuckoo search clustering problem in terms of global search ability. Also, the randomness at the beginning step is replaced by the chaotic map in order to make the search procedure more efficient and improve the convergence speed. In addition, an effective strategy is developed to well manage the boundaries.The experimental results on six famous real-life datasets show the significant superiority of the proposed QCCS over eight recent well known algorithms including, genetic quantum cuckoo search, hybrid cuckoo search and differential evolution, hybrid K-means and improved cuckoo search, standard cuckoo search, quantum particle swarm optimization, differential evolution, hybrid K-means chaotic particle swarm optimization and genetic algorithm for all benchmark datasets in terms of internal and external clustering quality.

[1]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[2]  Bo Xing,et al.  Cuckoo Inspired Algorithms , 2014 .

[3]  Djamel-Eddine Saïdouni,et al.  A New Quantum Evolutionary Local Search Algorithm for MAX 3-SAT Problem , 2008, HAIS.

[4]  Lihua Tian,et al.  Research on Image Segmentation based on Clustering Algorithm , 2016 .

[5]  G. Adesso,et al.  Measures and applications of quantum correlations , 2016, 1605.00806.

[6]  Ben Niu,et al.  A Population-Based Clustering Technique Using Particle Swarm Optimization and K-Means , 2015, ICSI.

[7]  Abdesslem Layeb A Quantum Inspired Particle Swarm Algorithm for Solving the Maximum Satisfiability Problem , 2010, Int. J. Comb. Optim. Probl. Informatics.

[8]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[9]  Jong-Hwan Kim,et al.  Genetic quantum algorithm and its application to combinatorial optimization problem , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[10]  Mahdi Jampour,et al.  Chaotic Genetic Algorithm based on Lorenz Chaotic System for Optimization Problems , 2013 .

[11]  Salim Chikhi,et al.  A New Quantum Cuckoo Search Algorithm for Multiple Sequence Alignment , 2014, J. Intell. Syst..

[12]  Avinash Chandra Pandey,et al.  Data clustering using hybrid improved cuckoo search method , 2016, 2016 Ninth International Conference on Contemporary Computing (IC3).

[13]  K. Jarrod Millman,et al.  Python for Scientists and Engineers , 2011, Comput. Sci. Eng..

[14]  Yanchun Liang,et al.  A novel quantum swarm evolutionary algorithm and its applications , 2007, Neurocomputing.

[15]  Ujjwal Maulik,et al.  Genetic algorithm-based clustering technique , 2000, Pattern Recognit..

[16]  Deepayan Chakrabarti,et al.  Evolutionary clustering , 2006, KDD '06.

[17]  Kabiru Dalhatu,et al.  Density base k-Mean's Cluster Centroid Initialization Algorithm , 2016 .

[18]  Nadjet Kamel,et al.  Improved Cuckoo Search Algorithm for Document Clustering , 2015, CIIA.

[19]  E. Schrödinger An Undulatory Theory of the Mechanics of Atoms and Molecules , 1926 .

[20]  Pinar Civicioglu,et al.  A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms , 2013, Artificial Intelligence Review.

[21]  Xin-She Yang,et al.  Engineering Optimization: An Introduction with Metaheuristic Applications , 2010 .

[22]  Sandra Paterlini,et al.  Differential evolution and particle swarm optimisation in partitional clustering , 2006, Comput. Stat. Data Anal..

[23]  Gexiang Zhang,et al.  Quantum-inspired evolutionary algorithms: a survey and empirical study , 2011, J. Heuristics.

[24]  Hong-Bin Shen,et al.  A Nonhomogeneous Cuckoo Search Algorithm Based on Quantum Mechanism for Real Parameter Optimization , 2017, IEEE Transactions on Cybernetics.

[25]  Stephen M. Barnett,et al.  Quantum information , 2005, Acta Physica Polonica A.

[26]  Yuhui Shi,et al.  Experimental Study on Boundary Constraints Handling in Particle Swarm Optimization: From Population Diversity Perspective , 2011, Int. J. Swarm Intell. Res..

[27]  Anil K. Jain Data clustering: 50 years beyond K-means , 2010, Pattern Recognit. Lett..

[28]  Abdesslem Layeb,et al.  A hybrid quantum inspired harmony search algorithm for 0-1 optimization problems , 2013, J. Comput. Appl. Math..

[29]  H. Schuster Deterministic chaos: An introduction , 1984 .

[30]  Xin-She Yang,et al.  Chaos-enhanced accelerated particle swarm optimization , 2013, Commun. Nonlinear Sci. Numer. Simul..

[31]  Alex Alves Freitas,et al.  A Survey of Evolutionary Algorithms for Clustering , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[32]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[33]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[34]  Shuyuan Yang,et al.  A novel quantum evolutionary algorithm and its application , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[35]  Guojun Gan,et al.  Data Clustering: Theory, Algorithms, and Applications (ASA-SIAM Series on Statistics and Applied Probability) , 2007 .

[36]  Siti Zaiton Mohd Hashim,et al.  An Effective Hybrid of Bees Algorithm and Differential Evolution Algorithm in Data Clustering , 2015 .

[37]  Jong-Hwan Kim,et al.  Quantum-inspired evolutionary algorithm for a class of combinatorial optimization , 2002, IEEE Trans. Evol. Comput..

[38]  Dervis Karaboga,et al.  A novel clustering approach: Artificial Bee Colony (ABC) algorithm , 2011, Appl. Soft Comput..

[39]  Ying Wu,et al.  Review of Clustering Algorithms , 2009 .

[40]  Richard C. Dubes,et al.  Cluster Analysis and Related Issues , 1993, Handbook of Pattern Recognition and Computer Vision.

[41]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[42]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[43]  Amit Konar,et al.  Metaheuristic Clustering , 2009, Studies in Computational Intelligence.

[44]  Andries Petrus Engelbrecht,et al.  Data clustering using particle swarm optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[45]  Asgarali Bouyer,et al.  An Efficient Hybrid Algorithm using Cuckoo Search and Differential Evolution for Data Clustering , 2015 .

[46]  Rajesh Kumar,et al.  A review on particle swarm optimization algorithms and their applications to data clustering , 2011, Artificial Intelligence Review.

[47]  Jong-Hwan Kim,et al.  Quantum-inspired evolutionary algorithms with a new termination criterion, H/sub /spl epsi// gate, and two-phase scheme , 2004, IEEE Transactions on Evolutionary Computation.

[48]  Xiaojun Wu,et al.  Quantum-Behaved Particle Swarm Optimization: Analysis of Individual Particle Behavior and Parameter Selection , 2012, Evolutionary Computation.

[49]  Nadjet Kamel,et al.  A New Hybrid Algorithm for Document Clustering Based on Cuckoo Search and K-means , 2014, SCDM.

[50]  Josef Tvrdík,et al.  Hybrid differential evolution algorithm for optimal clustering , 2015, Appl. Soft Comput..

[51]  Jianhong Wu,et al.  Data clustering - theory, algorithms, and applications , 2007 .

[52]  Elizabeth Purdom,et al.  Clustering of mRNA‐Seq data based on alternative splicing patterns , 2017, Biostatistics.

[53]  Robert Gilmore,et al.  The Topology of Chaos , 2003 .

[54]  Abdolreza Hatamlou,et al.  Black hole: A new heuristic optimization approach for data clustering , 2013, Inf. Sci..

[55]  Wenbo Xu,et al.  Quantum-Behaved Particle Swarm Optimization Clustering Algorithm , 2006, ADMA.

[56]  Ricardo J. G. B. Campello,et al.  Evolving clusters in gene-expression data , 2006, Inf. Sci..

[57]  Wojciech Kwedlo,et al.  A clustering method combining differential evolution with the K-means algorithm , 2011, Pattern Recognit. Lett..

[58]  Mohamed Batouche,et al.  A Quantum-Inspired Differential Evolution Algorithm for Solving the N-Queens Problem , 2010, Int. Arab J. Inf. Technol..

[59]  D. B. Owen,et al.  The Power of Student's t-test , 1965 .

[60]  Abdesslem Layeb,et al.  A novel quantum inspired cuckoo search for knapsack problems , 2011, Int. J. Bio Inspired Comput..

[61]  Xin-She Yang,et al.  Engineering optimisation by cuckoo search , 2010 .

[62]  Binggang Cao,et al.  Self-Adaptive Chaos Differential Evolution , 2006, ICNC.

[63]  Mohammed Azmi Al-Betar,et al.  Data Clustering Using Harmony Search Algorithm , 2011, SEMCCO.

[64]  Li-Yeh Chuang,et al.  Chaotic particle swarm optimization for data clustering , 2011, Expert Syst. Appl..

[65]  Pinar Civicioglu,et al.  Comparative Analysis of the Cuckoo Search Algorithm , 2014 .

[66]  Robert C. Hilborn,et al.  Chaos And Nonlinear Dynamics: An Introduction for Scientists and Engineers , 1994 .

[67]  Luigi Fortuna,et al.  Chaotic sequences to improve the performance of evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[68]  Xin-She Yang,et al.  Cuckoo Search and Firefly Algorithm: Theory and Applications , 2013 .

[69]  Xin-She Yang,et al.  Multiobjective cuckoo search for design optimization , 2013, Comput. Oper. Res..

[70]  Xin-She Yang,et al.  Firefly algorithm with chaos , 2013, Commun. Nonlinear Sci. Numer. Simul..

[71]  Kamel Nadjet,et al.  A New Algorithm for Data Clustering Based on Cuckoo Search Optimization , 2014, ICGEC 2014.